Climate warming and increasing atmospheric CO2 have contributed to increased intrinsic water-use efficiency on the northeastern Tibetan Plateau since 1850

Trees ◽  
2013 ◽  
Vol 27 (2) ◽  
pp. 465-475 ◽  
Author(s):  
Guobao Xu ◽  
Xiaohong Liu ◽  
Dahe Qin ◽  
Tuo Chen ◽  
Wenling An ◽  
...  
Chemosphere ◽  
2003 ◽  
Vol 50 (2) ◽  
pp. 217-222 ◽  
Author(s):  
S.W. Leavitt ◽  
S.B. Idso ◽  
B.A. Kimball ◽  
J.M. Burns ◽  
A. Sinha ◽  
...  

2020 ◽  
Vol 16 (4) ◽  
pp. 1509-1521
Author(s):  
Tammo Reichgelt ◽  
William J. D'Andrea ◽  
Ailín del C. Valdivia-McCarthy ◽  
Bethany R. S. Fox ◽  
Jennifer M. Bannister ◽  
...  

Abstract. Rising atmospheric CO2 is expected to increase global temperatures, plant water-use efficiency, and carbon storage in the terrestrial biosphere. A CO2 fertilization effect on terrestrial vegetation is predicted to cause global greening as the potential ecospace for forests expands. However, leaf-level fertilization effects, such as increased productivity and water-use efficiency, have not been documented from fossil leaves in periods of heightened atmospheric CO2. Here, we use leaf gas-exchange modeling on a well-preserved fossil flora from early Miocene New Zealand, as well as two previously published tropical floras from the same time period, to reconstruct atmospheric CO2, leaf-level productivity, and intrinsic water-use efficiency. Leaf gas-exchange rates reconstructed from early Miocene fossils, which grew at southern temperate and tropical latitudes when global average temperatures were 5–6 ∘C higher than today, reveal that atmospheric CO2 was ∼450–550 ppm. Early Miocene CO2 was similar to projected values for 2040 CE and is consistent with an Earth system sensitivity of 3–7 ∘C to a doubling of CO2. The Southern Hemisphere temperate leaves had higher reconstructed productivity than modern analogs, likely due to a longer growing season. This higher productivity was presumably mirrored at northern temperate latitudes as well, where a greater availability of landmass would have led to increased carbon storage in forest biomass relative to today. Intrinsic water-use efficiency of both temperate and tropical forest trees was high, toward the upper limit of the range for modern trees, which likely expanded the habitable range in regions that could not support forests with high moisture demands under lower atmospheric CO2. Overall, early Miocene elevated atmospheric CO2 sustained globally higher temperatures, and our results provide the first empirical evidence of concomitant enhanced intrinsic water-use efficiency, indicating a forest fertilization effect.


2009 ◽  
Vol 96 (10) ◽  
pp. 1779-1786 ◽  
Author(s):  
Abraham J. Miller-Rushing ◽  
Richard B. Primack ◽  
Pamela H. Templer ◽  
Sarah Rathbone ◽  
Sharda Mukunda

2020 ◽  
Author(s):  
Tammo Reichgelt ◽  
William J. D'Andrea ◽  
Ailín del C. Valdivia-McCarthy ◽  
Bethany R.S. Fox ◽  
Jennifer M. Bannister ◽  
...  

Abstract. Rising atmospheric CO2 is expected to increase global temperatures, plant water-use efficiency, and carbon storage in the terrestrial biosphere. A CO2 fertilization effect on terrestrial vegetation is predicted to cause global greening as the potential ecospace for forests expands. However, leaf-level fertilization effects, such as increased productivity and water-use efficiency, have not been documented from fossil leaves in periods of heightened atmospheric CO2. Leaf gas-exchange rates reconstructed from early Miocene fossils which grew at southern temperate and tropical latitudes, when global average temperatures were 5–6 °C higher than today reveal that atmospheric CO2 was ~ 450–550 ppm. Early Miocene CO2 is similar to projected values for 2040AD, and consistent with Earth System Sensitivity of 3–7 °C to a doubling of CO2. While early Miocene leaves had photosynthetic rates similar to modern plants, southern temperate leaves were more productive than modern due to a longer growing season. This higher productivity was likely mirrored at northern temperate latitudes as well, where a greater availability of landmass would have led to increased carbon storage in forest biomass relative to today. Intrinsic water-use efficiency of both temperate and tropical forest trees was high, toward the upper limit of the range for modern trees, which likely expanded the habitable range in regions that could not support forests with high moisture demands under lower atmospheric CO2. Overall, early Miocene elevated atmospheric CO2 sustained globally higher temperatures and our results reveal the first empirical evidence of concomitant enhanced intrinsic water-use efficiency, indicating a forest fertilization effect.


2014 ◽  
Vol 41 (3) ◽  
pp. 244 ◽  
Author(s):  
Ana-Maria Hereş ◽  
Jordi Voltas ◽  
Bernat Claramunt López ◽  
Jordi Martínez-Vilalta

Widespread drought-induced tree mortality has been documented around the world, and could increase in frequency and intensity under warmer and drier conditions. Ecophysiological differences between dying and surviving trees might underlie predispositions to mortality, but are poorly documented. Here we report a study of Scots pines (Pinus sylvestris L.) from two sites located in north-eastern Iberian Peninsula where drought-associated mortality episodes were registered during the last few decades. Time trends of discrimination against 13C (Δ13C) and intrinsic water-use efficiency (WUEi) in tree rings at an annual resolution and for a 34 year period were used to compare co-occurring now-dead and surviving pines. Results indicate that both surviving and now-dead pines significantly increased their WUEi over time, although this increase was significantly lower for now-dead individuals. These differential WUEi trends corresponded to different scenarios describing how plant gas exchange responds to increasing atmospheric CO2 (Ca): the estimated intercellular CO2 concentration was nearly constant in surviving pines but tended to increase proportionally to Ca in now-dead trees. Concurrently, the WUEi increase was not paralleled by a growth enhancement, regardless of tree state, suggesting that in water-limited areas like the Mediterranean, it cannot overcome the impact of an increasingly warmer and drier climate on tree growth.


Sign in / Sign up

Export Citation Format

Share Document