orange trees
Recently Published Documents


TOTAL DOCUMENTS

529
(FIVE YEARS 92)

H-INDEX

31
(FIVE YEARS 4)

Author(s):  
Rosilene Prestes ◽  
Luiz Colnago ◽  
Emanuel Carrilho ◽  
Nelson Antoniosi Filho ◽  
Maria Isabel Alves

Citrus sudden death (CSD) is a disease that has affected millions of orange trees in Brazil, leading to economic losses in the order of billions of US dollars. This article examines the effects of CSD on the fatty acid composition of triacylglycerides (TAG) extracted from rootstock and scion bark. The fatty acid profile determined by gas chromatography showed a reduction in oleic and linolenic acids, and an increase in the saturated fatty acids and linoleic acid content, which was in line with the severity of CSD. The reduction in linolenic acid content was related to its role in the biosynthesis of jasmonic acid, which is involved in responses to abiotic and biotic stresses, as well as senescence. These alterations in the fatty acid profile were also used to classify plants both with and without CSD symptoms by using chemometric means. This method represents an alternative to support the diagnosis of CSD disease.


Author(s):  
Siwalee Rattanapunya ◽  
Aomhatai Deethae ◽  
Susan Woskie ◽  
Pornpimol Kongthip ◽  
Karl R. Matthews

Background: The widespread indiscriminate application of antibiotics to food crops to control plant disease represents a potential human health risk. In this study, the presence of antibiotic-resistant staphylococci associated with workers and orange orchard environments was determined. A total of 20 orchards (orange and other fruits) were enrolled in the study. Trees in the orange orchards were treated with ampicillin on a pre-determined schedule. Environmental samples (n = 60) included soil, water, and oranges; 152 hand and nasal samples were collected from 76 healthy workers. Antibiotic susceptibility profiles were determined for all staphylococcal isolates. Results: This investigation revealed that of the total Staphylococcus spp. recovered from the orange orchard, 30% (3/10) were resistant to erythromycin, 20% (2/10) were resistant to ampicillin, and 20% (2/10) resistant to both erythromycin and ampicillin. Conclusion: The application of antibiotics to orange trees in open production environments to halt the spread of bacterial disease presents risks to the environment and creates health concerns for Thai farmers using those agents. ARB on crops such as oranges may enter the global food supply and adversely affect public health.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2577
Author(s):  
Sherif F. El-Gioushy ◽  
Zheli Ding ◽  
Asmaa M. E. Bahloul ◽  
Mohamed S. Gawish ◽  
Hanan M. Abou El Ghit ◽  
...  

Iron (Fe) is required for most metabolic processes, including DNA synthesis, respiration, photosynthesis, and chlorophyll biosynthesis; however, Fe deficiency is common in arid regions, necessitating additional research to determine the most efficient form of absorbance. Nano-fertilizers have characteristics that are not found in their traditional equivalents. This research was implemented on Washington navel orange trees (Citrus sinensis L. Osbeck) to investigate the effect of three iron forms—nano (Fe-NPs), sulfate (FeSO4), and chelated (Fe-chelated)—as a foliar spray on the growth, fruiting aspects, and nutritional status of these trees compared to control. The highest values of the tested parameters were reported when the highest Fe-NPs level and the highest Fe-chelated (EDTA) rate were used. Results obtained here showed that the spraying of the Washington navel orange trees grown under similar environmental conditions and horticulture practices adopted in the current experiment with Fe-NPs (nanoform) and/or Fe-chelated (EDTA) at 0.1% is a beneficial application for enhancing vegetative growth, flower set, tree nutritional status, and fruit production and quality. Application of Fe-NPs and Fe-chelated (EDTA, 0.1%) increased yield by 32.0% and 25% and total soluble solids (TSS) by 18.5% and 17.0%, respectively, compared with control. Spraying Washington navel orange trees with nano and chelated iron could be considered a significant way to improve vegetative growth, fruit production, quality, and nutritional status while also being environmentally preferred in the arid regions.


HortScience ◽  
2021 ◽  
pp. 1-11
Author(s):  
Lisa Tang ◽  
Garima Singh ◽  
Megan Dewdney ◽  
Tripti Vashisth

Under Florida conditions, sweet orange (Citrus sinensis) affected by Huanglongbing {HLB [Candidatus Liberibacter asiaticus (CLas)]} frequently exhibits irregular flowering patterns, including off-season flowering and prolonged bloom period. Such patterns can increase the opportunity for temporal and spatial proliferation of pathogens that infect flower petals, including the fungal causal agent for postbloom fruit drop (PFD) Colletotrichum acutatum J.H. Simmonds. For the development of strategies to manipulate flowering, the effects of floral inhibitor gibberellic acid (GA3) sprayed monthly at full- and half-strength rates (49 and 25 g·ha−1, or 33 and 17 mg·L−1, respectively) with different regimens, starting from September and ending in November, December, or January, on the pattern of spring bloom were evaluated in field-grown HLB-affected ‘Valencia’ sweet orange at two locations in subsequent February through April for two separate years in this study. To further examine whether GA3 effects on flowering patterns vary in different cultivars, early-maturing ‘Navel’ sweet orange trees receiving no GA3 or full-strength GA3 monthly in September through January were included. Overall, for ‘Valencia’ sweet orange, monthly applications of GA3 at 49 g·ha−1 from September to December not only minimized the incidence of scattered emergence of flower buds and open flowers before the major bloom but also shortened the duration of flowering, compared with the untreated control trees. In addition, exogenous GA3 led to decreased leaf flowering locus t (FT) expression starting in December, as well as reduced expression of its downstream flower genes in buds during later months. When applied monthly from September through January at 49 g·ha−1, similar influences of exogenous GA3 on repressing flower bud formation and compressing bloom period were observed in ‘Navel’ sweet orange. These results suggest that by effectively manipulating flowering in HLB-affected sweet orange trees under the Florida climate conditions, exogenous GA3 may be used to reduce early sporadic flowering and thereby shorten the window of C. acutatum infection that causes loss in fruit production.


2021 ◽  
Vol 23 (1) ◽  
pp. 14-20
Author(s):  
ASHUTOSH KUMAR MISHRA ◽  
PARAS R. PUJARI ◽  
SHALINI DHYANI ◽  
PARIKSHIT VERMA ◽  
RAMESH JANIPELLA ◽  
...  

We used thermal dissipation method for sap flux measurements in orange trees to assess its water requirement in Narkhed-Pandhurna region. Thermal Dissipation Probe (TDP) sensors were installed in 5-year old (young) and 15-year old (mature) orange trees to measure the diurnal sap flux variations in trees during November 21, 2019, to January 31, 2020 (71 days). The results show that the maximum daily water uptake by the 5-year old tree was 1.1 L observed on 39th day of measurement (December 29, 2019) and in the 15-year old tree it was 5.0 L, and it observed on 38th day (December 28, 2019) of measurement. The cumulative water uptake during the study period by the 5-year old tree was 49.0 L, and the 15-year old tree consumed 257.4 L of water. The results were compared with the recommended irrigational values of Indian Horticulture Board (IHB), Government of India (GoI) and Groundwater Survey and Development Agency (GSDA), Government of Maharashtra (GoMH) for orange orchards. The initial investigation shows that recommended guidelines for irrigation of orange trees are exorbitantly high and needs to be revised. The sap flow methods are more precise that can measure sap flow at a very short interval and can generate a time series of data. It can be used to revise the guidelines with the aim to conserve water and propose precision water irrigation for the study area in particular and different agro-climatic zones of the country in general.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jefferson Rangel da Silva ◽  
Rodrigo Marcelli Boaretto ◽  
Jéssica Aparecida Lara Lavorenti ◽  
Bruna Castriani Ferreira dos Santos ◽  
Helvecio Della Coletta-Filho ◽  
...  

This study addresses the interactive effects of deficit irrigation and huanglongbing (HLB) infection on the physiological, biochemical, and oxidative stress responses of sweet orange trees. We sought to answer: (i) What are the causes for the reduction in water uptake in HLB infected plants? (ii) Is the water status of plants negatively affected by HLB infection? (iii) What are the key physiological traits impaired in HLB-infected plants? and (iv) What conditions can mitigate both disease severity and physiological/biochemical impairments in HLB-infected plants? Two water management treatments were applied for 11 weeks to 1-year-old-trees that were either healthy (HLB–) or infected with HLB (+) and grown in 12-L pots. Half of the trees were fully irrigated (FI) to saturation, whereas half were deficit-irrigated (DI) using 40% of the water required to saturate the substrate. Our results demonstrated that: reduced water uptake capacity in HLB+ plants was associated with reduced root growth, leaf area, stomatal conductance, and transpiration. Leaf water potential was not negatively affected by HLB infection. HLB increased leaf respiration rates (ca. 41%) and starch synthesis, downregulated starch breakdown, blocked electron transport, improved oxidative stress, and reduced leaf photosynthesis (ca. 57%) and photorespiration (ca.57%). Deficit irrigation reduced both leaf respiration (ca. 45%) and accumulation of starch (ca.53%) by increasing maltose (ca. 20%), sucrose, glucose, and fructose contents in the leaves, decreasing bacterial population (ca. 9%) and triggering a series of protective measures against further impairments in the physiology and biochemistry of HLB-infected plants. Such results provide a more complete physiological and biochemical overview of HLB-infected plants and can guide future studies to screen genetic tolerance to HLB and improve management strategies under field orchard conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2034
Author(s):  
Ilya Dovjik ◽  
Diriba Bane Nemera ◽  
Shabtai Cohen ◽  
Yosepha Shahak ◽  
Lyudmila Shlizerman ◽  
...  

Fruit tree production is challenged by climate change, which is characterized by heat waves, warmer winters, increased storms, and recurrent droughts. The technology of top netting may provide a partial solution, as it alleviates climatic effects by microclimate manipulation. The tree physiological performance is improved under the nets, with an increased productivity and quality. The application of photoselective nets, which also alter the light spectrum, may result in additional horticultural improvements. We present the results of a 5-year experimental study on Valencia oranges, examining three nets: red, pearl, and transparent. Each net was tested at three fertigation conditions: a field standard (100%, I100) and two reduced fertigation regimes, which were 80% (I80) and 60% (I60) of the standard. The average multi-annual yield under the red and pearl nets with I100 and I80 and transparent net with I100 was significantly higher than that of the control trees. While the multi-annual yield increase under the red net I80 was due to the increase in the fruit number, in other treatments, the effect was mostly due to induction in the individual fruit weight. The data presented here show that an increased productivity of orange trees grown under photoselective nets, particularly the red net, with its specific spectral properties, was achieved with a considerable water-saving effect.


2021 ◽  
Vol 07 (09) ◽  
Author(s):  
Le Minh Thanh ◽  

Decline disease has been discovered for a long time but infection is more extensively increasing. It is difficult to detect because the disease is originated from roots. Among the causes, soil fungi have been widely determined. Using fungicides is not an effective way to control the disease. In this case, biocontrol with suitable microbial strains is a potential approach. This study aims to investigate in vitro the possibility of using Trichoderma and Chaetonium to control the causing fungi. Two Chaetonium strains and 1 Trichoderma asperellum strain were isolated from diseased-root samples. Six strains of Trichoderma (isolated strains T1, T2, T3, T4, T5, T6) and three strains of Chaetonium (isolated strains C1, C2, C3) showed a reasonably antagonistic ability to Phytophthora, Fusarium, Rhizoctonia. Base on the PCR identification method, 6 strains of Trichoderma was isolated belonging to Trichoderma asperellum species, and 3 strains of Chaetonium belonging to 2 species Chaetomium globosum and Chaetomium cichlids.


Sign in / Sign up

Export Citation Format

Share Document