Daily ambient air mean NO2 concentration modeling and forecasting based on the elliptic-orbit model with weekly quasi-periodic extension: a case study

2014 ◽  
Vol 29 (2) ◽  
pp. 547-561 ◽  
Author(s):  
Zong-chang Yang
Risk Analysis ◽  
2014 ◽  
Vol 35 (5) ◽  
pp. 901-918 ◽  
Author(s):  
Theodore J. Mansfield ◽  
Daniel A. Rodriguez ◽  
Joseph Huegy ◽  
Jacqueline MacDonald Gibson

2013 ◽  
Vol 6 (4) ◽  
pp. 7425-7472
Author(s):  
U. Schumann ◽  
R. Hempel ◽  
H. Flentje ◽  
M. Garhammer ◽  
K. Graf ◽  
...  

Abstract. Photogrammetric methods and analysis results for contrails observed with wide-angle cameras are described. Four cameras of two different types (view angle < 90° or whole-sky imager) at the ground at various positions are used to track contrails and to derive their altitude, width, and horizontal speed. Camera models for both types are described to derive the observation angles for given image coordinates and their inverse. The models are calibrated with sightings of the Sun, the Moon and a few bright stars. The methods are applied and tested in a case study. Four persistent contrails crossing each other together with a short-lived one are observed with the cameras. Vertical and horizontal positions of the contrails are determined from the camera images to an accuracy of better than 200 m and horizontal speed to 0.2 m s−1. With this information, the aircraft causing the contrails are identified by comparison to traffic waypoint data. The observations are compared with synthetic camera pictures of contrails simulated with the contrail prediction model CoCiP, a Lagrangian model using air traffic movement data and numerical weather prediction (NWP) data as input. The results provide tests for the NWP and contrail models. The cameras show spreading and thickening contrails suggesting ice-supersaturation in the ambient air. The ice-supersaturated layer is found thicker and more humid in this case than predicted by the NWP model used. The simulated and observed contrail positions agree up to differences caused by uncertain wind data. The contrail widths, which depend on wake vortex spreading, ambient shear and turbulence, were partly wider than simulated.


Sign in / Sign up

Export Citation Format

Share Document