Evaluation of outdoor human thermal sensation of local climate zones based on long-term database

2017 ◽  
Vol 62 (2) ◽  
pp. 183-193 ◽  
Author(s):  
János Unger ◽  
Nóra Skarbit ◽  
Tamás Gál
2020 ◽  
Vol 82 ◽  
pp. 15-31
Author(s):  
EA Ramírez-Aguilar ◽  
LCL Souza

This paper demonstrates an early application of local climate zones (LCZs) in the city of Bogotá, Colombia. The main goal was to assess the thermal properties within the areas of influence (sectors) of 10 meteorological stations in the city, classified into the LCZ scheme. Air temperature observations at 07:00, 13:00 and 19:00 h (T7:00, T13:00 and T19:00) and daily measurements were obtained from the stations, and the maximum (Tmax), minimum (Tmin) and mean (Tmean) values were calculated. Their distribution and variation were analyzed, thermal sensation categories were calculated, and the thermal differences (ΔTLCZX-LCZD) between open-compact LCZ types and LCZD (typical rural type with low plants) were obtained in order to identify patterns between the stations and their assigned LCZs. Furthermore, we compared urban morphology (form) parameters to the ranges proposed in the literature to classify LCZs. The results clearly showed variations and patterns between the stations and their assigned LCZs when using Tmin, T7:00 and T19:00 air temperature data and the indices and categories calculated from these. Values of ΔTLCZX-LCZD > 5°C were found in the densely urbanised LCZ at night, and some negative values at noon suggested the presence of an urban cool island. The results show the usefulness of LCZs in understanding differences and temperature variations between divergent urban sectors. However, when different LCZ types are grouped, the thermal differences between them can be better appreciated and explained. The main conclusion is that the urban surface of Bogotá does not generate high temperatures, but decreases the occurrences of low values in Tmin, Tmean, T19:00 and T7:00.


2021 ◽  
Vol 13 (11) ◽  
pp. 6374
Author(s):  
Yang Lu ◽  
Jiansi Yang ◽  
Song Ma

Local climate zones (LCZs) emphasize the influence of representative geometric properties and surface cover characteristics on the local climate. In this paper, we propose a multi-temporal LCZ mapping method, which was used to obtain LCZ maps for 2005 and 2015 in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA), and we analyze the effects of LCZ changes in the GBA on land surface temperature (LST) changes. The results reveal that: (1) The accuracy of the LCZ mapping of the GBA for 2005 and 2015 is 85.03% and 85.28%, respectively. (2) The built type category showing the largest increase in area from 2005 to 2015 is LCZ8 (large low-rise), with a 1.01% increase. The changes of the LCZs also vary among the cities due to the different factors, such as the economic development level and local policies. (3) The area showing a warming trend is larger than the area showing a cooling trend in all the cities in the GBA study area. The main reasons for the warming are the increase of built types, the enhancement of human activities, and the heat radiation from surrounding high-temperature areas. (4) The spatial morphology changes of the built type categories are positively correlated with the LST changes, and the morphological changes of the LCZ4 (open high-rise) and LCZ5 (open midrise) built types exert the most significant influence. These findings will provide important insights for urban heat mitigation via rational landscape design in urban planning management.


2021 ◽  
pp. 103174
Author(s):  
Yi ZHOU ◽  
Guoliang ZHANG ◽  
Li JIANG ◽  
Xin CHEN ◽  
Tianqi XIE ◽  
...  

Author(s):  
Chunhong Zhao

The Local Climate Zones (LCZs) concept was initiated in 2012 to improve the documentation of Urban Heat Island (UHI) observations. Despite the indispensable role and initial aim of LCZs concept in metadata reporting for atmospheric UHI research, its role in surface UHI investigation also needs to be emphasized. This study incorporated LCZs concept to study surface UHI effect for San Antonio, Texas. LCZ map was developed by a GIS-based LCZs classification scheme with the aid of airborne Lidar dataset and other freely available GIS data. Then, the summer LST was calculated based Landsat imagery, which was used to analyse the relations between LST and LCZs and the statistical significance of the differences of LST among the typical LCZs, in order to test if LCZs are able to efficiently facilitate SUHI investigation. The linkage of LCZs and land surface temperature (LST) indicated that the LCZs mapping can be used to compare and investigate the SUHI. Most of the pairs of LCZs illustrated significant differences in average LSTs with considerable significance. The intra-urban temperature comparison among different urban classes contributes to investigate the influence of heterogeneous urban morphology on local climate formation.


Sign in / Sign up

Export Citation Format

Share Document