scholarly journals CLASSIFICATION FRAMEWORK OF LOCAL CLIMATE ZONES USING WORLD URBAN DATABASE AND ACCESS PORTAL TOOLS: CASE STUDY OF ALEXANDRIA CITY, EGYPT

Author(s):  
SARAH M. ABOUGENDIA ◽  
HANY M. AYAD ◽  
ZEYAD T. EL-SAYAD
2019 ◽  
Vol 11 (23) ◽  
pp. 2828
Author(s):  
Zhao ◽  
Ma ◽  
Zhong ◽  
Zhao ◽  
Cao

Local climate zones (LCZ) have become a generic criterion for climate analysis among global cities, as they can describe not only the urban climate but also the morphology inside the city. LCZ mapping based on the remote sensing classification method is a fundamental task, and the protocol proposed by the World Urban Database and Access Portal Tools (WUDAPT) project, which consists of random forest classification and filter-based spatial smoothing, is the most common approach. However, the classification and spatial smoothing lack a unified framework, which causes the appearance of small, isolated areas in the LCZ maps. In this paper, a spatial-contextual information-based self-training classification framework (SCSF) is proposed to solve this LCZ classification problem. In SCSF, conditional random field (CRF) is used to integrate the classification and spatial smoothing processing into one model and a self-training method is adopted, considering that the lack of sufficient expert-labeled training samples is always a big issue, especially for the complex LCZ scheme. Moreover, in the unary potentials of CRF modeling, pseudo-label selection using a self-training process is used to train the classifier, which fuses the regional spatial information through segmentation and the local neighborhood information through moving windows to provide a more reliable probabilistic classification map. In the pairwise potential function, SCSF can effectively improve the classification accuracy by integrating the spatial-contextual information through CRF. The experimental results prove that the proposed framework is efficient when compared to the traditional mapping product of WUDAPT in LCZ classification.


Urban Climate ◽  
2018 ◽  
Vol 24 ◽  
pp. 567-576 ◽  
Author(s):  
Ran Wang ◽  
Chao Ren ◽  
Yong Xu ◽  
Kevin Ka-Lun Lau ◽  
Yuan Shi

2019 ◽  
Author(s):  
Parth Bansal

This study was conceptualized to investigate differences in surface temperature profile of Local Climate Zones (LCZ) classes in different seasonal conditions. Manhattan was selected as case study due to its dense, but heterogeneous built-up profile and presence of green area which formed the baseline for temperature comparison. However, this study failed to find significant results, in terms of the distinct Urban Heat Island (UHI) feature often reported in literature. Instead, this study suggests that in the case of Manhattan UHI is predominantly within ± 0.5 C° except during summer season. In summer season, where more difference in built and green LCZ is observed, the noise in data, defined by standard deviation of surface temperature in the class, is also higher. Thus, our study concludes that Landsat based surface temperature should be used with extreme caution to investigate UHI since most imagery is taken during day time.


Urban Climate ◽  
2018 ◽  
Vol 26 ◽  
pp. 258-274 ◽  
Author(s):  
Yves Richard ◽  
Justin Emery ◽  
Julita Dudek ◽  
Julien Pergaud ◽  
Carmela Chateau-Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document