A particle swarm optimization, fuzzy PID controller with generator automatic voltage regulator

2018 ◽  
Vol 23 (18) ◽  
pp. 8839-8853 ◽  
Author(s):  
Abdullah J. H. Al Gizi
2017 ◽  
Vol 6 (2) ◽  
pp. 42-63 ◽  
Author(s):  
Ajit Kumar Barisal ◽  
Tapas Kumar Panigrahi ◽  
Somanath Mishra

This article presents a hybrid PSO with Levy flight algorithm (LFPSO) for optimization of the PID controllers and employed in automatic generation control (AGC) of nonlinear power system. The superiority of the proposed LFPSO approach has been demonstrated with comparing to recently published Lozi map-based chaotic optimization algorithm (LCOA) and Particle swarm optimization to solve load-frequency control (LFC) problem. It is found that the proposed LFPSO method has robust dynamic behavior in terms of settling times, overshoots and undershoots by varying the system parameters and loading conditions from their nominal values as well as size and locations of disturbance. Secondly, a three-area thermal power system is considered with nonlinear as Generation Rate Constraints (GRC) and outperforms to the results of Bacteria Foraging algorithm based integral controller as well as hybrid Differential Evolution and Particle Swarm Optimization based fuzzy PID controller for the similar power system. Finally, the proficiency of the proposed controller is also verified by random load patterns.


2020 ◽  
Vol 13 (1) ◽  
pp. 60-78
Author(s):  
Shaobin Lv ◽  
Guoqiang Chen ◽  
Jun Dai

Background: The active suspension can be adjusted in real time according to the change of road condition and vehicle state to enhance the performance of active suspension that has received widespread attention. Suspension control strategies and actuators are the key issues of the active suspension, and are the main research directions for active suspension patents. Objective: The numerical analysis method is proposed to study the performance characteristics of the active suspension controlled by different controllers. Methods: The active suspension control model and control strategy based on particle swarm optimization are established, and two active suspensions controlled by the sliding mode controller and the fuzzy PID controller are proposed. Moreover, two active suspension systems are optimized by particle swarm optimization. Results: The results of the analysis show that the performance of the active suspension is significantly improved compared with the passive suspension when the vehicle runs on the same road. The ride comfort of the active suspension controlled by the fuzzy PID controller has the best adaptive performance when the vehicle runs on different grade roads or white noise roads. The active suspension controlled by the fuzzy PID controller has the best ride comfort. Conclusion: A good control strategy can effectively improve the performance of the active suspension. To improve the performance of the active suspension, it can be controlled by utilizing different control strategies. The results lay a foundation for the active suspension experiments, the dynamic analysis and the optimization design of suspension structure.


Author(s):  
Tufan Dogruer ◽  
Mehmet Serhat Can

In this paper, a Fuzzy proportional–integral–derivative (Fuzzy PID) controller design is presented to improve the automatic voltage regulator (AVR) transient characteristics and increase the robustness of the AVR. Fuzzy PID controller parameters are determined by a genetic algorithm (GA)-based optimization method using a novel multi-objective function. The multi-objective function, which is important for tuning the controller parameters, obtains the optimal solution using the Integrated Time multiplied Absolute Error (ITAE) criterion and the peak value of the output response. The proposed method is tested on two AVR models with different parameters and compared with studies in the literature. It is observed that the proposed method improves the AVR transient response properties and is also robust to parameter changes.


Sign in / Sign up

Export Citation Format

Share Document