kernel extreme learning machine
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 163)

H-INDEX

22
(FIVE YEARS 9)

Author(s):  
Kishore Balasubramanian ◽  
Ananthamoorthy NP ◽  
Ramya K

Parkinson’s and Alzheimer’s Disease are believed to be most prevalent and common in older people. Several data-mining approaches are employed on the neuro-degenerative data in predicting the disease. A novel method has been built and developed to diagnose Alzheimer’s (AD) and Parkinson’s (PD) in early stages, which includes image acquisition, pre-processing, feature extraction and selection, followed by classification. The challenge lies in selecting the optimal feature subset for classification. In this work, the Sunflower Optimisation Algorithm (SFO) is employed to select the optimal feature set, which is then fed to the Kernel Extreme Learning Machine (KELM) for classification. The method is tested on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and local dataset for AD, the University of California, Irvine (UCI) machine learning repository and the Istanbul dataset for PD. Experimental outcomes have demonstrated a high accuracy level in both AD and PD diagnosis. For AD diagnosis, the highest classification rate is obtained for the AD versus NC classification using the ADNI dataset (99.32%) and local dataset (98.65%). For PD diagnosis, the highest accuracy of 99.52% and 99.45% is achieved on the UCI and Istanbul datasets, respectively. To show the robustness of the method, the method is compared with other similar methods of feature selection and classification with 10-fold cross-validation (CV) and with unseen data. The method proposed has an excellent prospect, bringing greater convenience to clinicians in making a better solid decision in clinical diagnosis of neuro-degenerative diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaohua Li ◽  
Ge Yu

Estimating the indoor position of users in commercial buildings remains a significant challenge to date. Although the WiFi-based indoor localization has been widely explored in many works by employing received signal strength (RSS) patterns as the features, they usually lead to inaccurate results as the RSS could be easily affected by the indoor environmental dynamics. Besides, existing methods are computationally intensive, which have a high time consumption that makes them unsuitable for real-life applications. In order to deal with those issues, we propose to use standardizing waveform tendency (SWT) of RSS for indoor positioning. We show that the proposed SWT is robust to the noise generated by the dynamic environment. We further develop a novel smartphone indoor positioning system by integrating SWT and kernel extreme learning machine (KELM) algorithm. Extensive real-world positioning experiments are conducted to demonstrate the superiority of our proposed model in terms of both positioning accuracy and robustness to environmental changes when comparing with state-of-the-art baselines.


Author(s):  
MI LI ◽  
JINYU ZHANG ◽  
QIAN ZHAI ◽  
JIAMING KANG ◽  
SHENGFU LU ◽  
...  

Up to now, there is still the absence of research about depression recognition using resting-state functional magnetic resonance imaging (rest_fMRI) and deep learning. Previous studies have shown that regional homogeneity (ReHo) of rest_fMRI (rest_ReHo_fMRI) is a characterization of the functional synchronization of adjacent voxels in brain regions, and the mental and behavioral abnormalities in depression are due to an imbalance of ReHo synchronization in some brain functional areas. Accordingly, this paper presents a method for depression recognition using rest_ReHo_fMRI. First, the rest_ReHo_fMRI is extracted from the preprocessed rest-fMRI by calculation. Then, deep convolutional networks (such as VGG16) pretrained on ImageNet are used to automatically complete extracting the classification features from rest_ReHo_fMRI. Finally, the Kernel Extreme Learning Machine (KELM) was used to classify the depression. The results of the test set show that the proposed method achieves 89.07% in sensitivity and 89.74% in specificity. This study suggests that features of rest_ReHo_fMRI can be used as biomarkers to distinguish depression from normal people.


2021 ◽  
Vol 11 (20) ◽  
pp. 9562
Author(s):  
Ghalib Ahmed Tahir ◽  
Chu Kiong Loo

Recently, food recognition has received more research attention for mHealth applications that use automated visual-based methods to assess dietary intake. The goal is to improve the food diaries by addressing the challenges faced by existing methodologies. In addition to the classical challenge of the absence of rigid food structure and intra-class variations, food diaries employing deep networks trained with pristine images are susceptible to quality variations in real-world conditions of image acquisition and transmission. Similarly, existing progressive classifiers that use visual features via a convolutional neural network (CNN) classify food categories and cannot detect food ingredients. We aim to provide a system that selects the optimal subset of features from quality resilient CNNs and subsequently incorporates the parallel type of classification to tackle such challenges. The first progressive classifier recognizes food categories, and its multilabel extension detects food ingredients. Following this idea, after extracting features from the quality resilient category and ingredient CNN models by fine-tuning it on synthetic images generated using the novel online data augmentation method random iterative mixup. Our feature selection strategy uses the Shapley additive explanation (SHAP) values from the gradient explainer to select the best features. Then, novel progressive kernel extreme learning machine (PKELM) is exploited to cater to domain variations due to quality distortions, intra-class variations, and so forth, by remodeling the network structure based on activity value with the nodes. PKELM extension for multilabel classification detects ingredients by employing a bipolar step function to process test output and then selecting the column labels of the resulting matrix with a value of one. Moreover, during online learning, the PKELM novelty detection mechanism can label unlabeled instances and detect noisy samples. Experimental results showed superior performance on an integrated set of measures for seven publicly available food datasets.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2115
Author(s):  
Chengcheng Chen ◽  
Xianchang Wang ◽  
Chengwen Wu ◽  
Majdi Mafarja ◽  
Hamza Turabieh ◽  
...  

Soil erosion control is a complex, integrated management process, constructed based on unified planning by adjusting the land use structure, reasonably configuring engineering, plant, and farming measures to form a complete erosion control system, while meeting the laws of soil erosion, economic and social development, and ecological and environmental security. The accurate prediction and quantitative forecasting of soil erosion is a critical reference indicator for comprehensive erosion control. This paper applies a new swarm intelligence optimization algorithm to the soil erosion classification and prediction problem, based on an enhanced moth-flame optimizer with sine–cosine mechanisms (SMFO). It is used to improve the exploration and detection capability by using the positive cosine strategy, meanwhile, to optimize the penalty parameter and the kernel parameter of the kernel extreme learning machine (KELM) for the rainfall-induced soil erosion classification prediction problem, to obtain more-accurate soil erosion classifications and the prediction results. In this paper, a dataset of the Vietnam Son La province was used for the model evaluation and testing, and the experimental results show that this SMFO-KELM method can accurately predict the results, with significant advantages in terms of classification accuracy (ACC), Mathews correlation coefficient (MCC), sensitivity (sensitivity), and specificity (specificity). Compared with other optimizer models, the adopted method is more suitable for the accurate classification of soil erosion, and can provide new solutions for natural soil supply capacity analysis, integrated erosion management, and environmental sustainability judgment.


Sign in / Sign up

Export Citation Format

Share Document