scholarly journals Left residuated lattices induced by lattices with a unary operation

2019 ◽  
Vol 24 (2) ◽  
pp. 723-729
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract In a previous paper, the authors defined two binary term operations in orthomodular lattices such that an orthomodular lattice can be organized by means of them into a left residuated lattice. It is a natural question if these operations serve in this way also for more general lattices than the orthomodular ones. In our present paper, we involve two conditions formulated as simple identities in two variables under which this is really the case. Hence, we obtain a variety of lattices with a unary operation which contains exactly those lattices with a unary operation which can be converted into a left residuated lattice by use of the above mentioned operations. It turns out that every lattice in this variety is in fact a bounded one and the unary operation is a complementation. Finally, we use a similar technique by using simpler terms and identities motivated by Boolean algebras.

1979 ◽  
Vol 31 (5) ◽  
pp. 961-985 ◽  
Author(s):  
Günter Bruns

Introduction. Every orthomodular lattice (abbreviated : OML) is the union of its maximal Boolean subalgebras (blocks). The question thus arises how conversely Boolean algebras can be amalgamated in order to obtain an OML of which the given Boolean algebras are the blocks. This question we deal with in the present paper.The problem was first investigated by Greechie [6, 7, 8, 9]. His technique of pasting [6] will also play an important role in this paper. A case solved completely by Greechie [9] is the case that any two blocks intersect either in the bounds only or have the bounds, an atom and its complement in common. This is, of course, a very special situation. The more surprising it is that Greechie's methods, if skillfully applied, yield considerable insight into the structure of OMLs and provide a seemingly unexhaustible source for counter-examples.


1972 ◽  
Vol 24 (2) ◽  
pp. 328-337 ◽  
Author(s):  
Günter Bruns ◽  
Gudrun Kalmbach

In this paper we continue the study of equationally defined classes of orthomodular lattices started in [1].The only atom in the lattice of varieties of orthomodular lattices is the variety of all Boolean algebras. Every nontrivial variety contains it. It follows from B. Jónsson [4, Corollary 3.2] that the variety [MO2] generated by the orthomodular lattice MO2 of Figure 1 covers the variety of all Boolean algebras. I t was first shown by R. J. Greechie (oral communication) and is not difficult to see that every variety not consisting of Boolean algebras only contains [MO2]. Again it follows from the result of Jónsson's mentioned above that the varieties generated by one of the orthomodular lattices of Figures 2 to 5 cover [MO2]. The Figures 4 and 5 are to be understood in such a way that the orthocomplement of every element is on the vertical line through this element.


2017 ◽  
Vol 5 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one.


2020 ◽  
Vol 70 (2) ◽  
pp. 239-250
Author(s):  
Ivan Chajda ◽  
Jan Kühr ◽  
Helmut Länger

Abstract It is known that every relatively pseudocomplemented lattice is residuated and, moreover, it is distributive. Unfortunately, non-distributive lattices with a unary operation satisfying properties similar to relative pseudocomplementation cannot be converted in residuated ones. The aim of our paper is to introduce a more general concept of a relatively residuated lattice in such a way that also non-modular sectionally pseudocomplemented lattices are included. We derive several properties of relatively residuated lattices which are similar to those known for residuated ones and extend our results to posets.


2021 ◽  
Vol 29 (1) ◽  
pp. 183-200
Author(s):  
Dana Piciu ◽  
Christina Theresia Dan ◽  
Anca Dina

Abstract In this paper, in the spirit of [4], we study a new type of filters in residuated lattices : Gődel filters. So, we characterize the filters for which the quotient algebra that is constructed via these filters is a Gődel algebra and we establish the connections between these filters and other types of filters. Using Gődel filters we characterize the residuated lattices which are Gődel algebras. Also, we prove that a residuated lattice is a Gődel algebra (divisible residuated lattice, MTL algebra, BL algebra) if and only if every filter is a Gődel filter (divisible filter, MTL filter, BL filter). Finally, we present some results about injective Gődel algebras showing that complete Boolean algebras are injective objects in the category of Gődel algebras.


2016 ◽  
Vol 09 (04) ◽  
pp. 1650088
Author(s):  
Ivan Chajda ◽  
Helmut Länger

It is an easy observation that every residuated lattice is in fact a semiring because multiplication distributes over join and the other axioms of a semiring are satisfied trivially. This semiring is commutative, idempotent and simple. The natural question arises if the converse assertion is also true. We show that the conversion is possible provided the given semiring is, moreover, completely distributive. We characterize semirings associated to complete residuated lattices satisfying the double negation law where the assumption of complete distributivity can be omitted. A similar result is obtained for idempotent residuated lattices.


2019 ◽  
Vol 69 (3) ◽  
pp. 533-540
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract Basic algebras were introduced by Chajda, Halaš and Kühr as a common generalization of MV-algebras and orthomodular lattices, i.e. algebras used for formalization of non-classical logics, in particular the logic of quantum mechanics. These algebras were represented by means of lattices with section involutions. On the other hand, classical logic was formalized by means of Boolean algebras which can be converted into Boolean rings. A natural question arises if a similar representation exists also for basic algebras. Several attempts were already realized by the authors, see the references. Now we show that if a basic algebra is commutative then there exists a representation via certain semirings with involution similarly as it was done for MV-algebras by Belluce, Di Nola and Ferraioli. These so-called basic semirings, their ideals and congruences are studied in the paper.


Studia Logica ◽  
2021 ◽  
Author(s):  
D. Fazio ◽  
A. Ledda ◽  
F. Paoli

AbstractThe variety of (pointed) residuated lattices includes a vast proportion of the classes of algebras that are relevant for algebraic logic, e.g., $$\ell $$ ℓ -groups, Heyting algebras, MV-algebras, or De Morgan monoids. Among the outliers, one counts orthomodular lattices and other varieties of quantum algebras. We suggest a common framework—pointed left-residuated $$\ell $$ ℓ -groupoids—where residuated structures and quantum structures can all be accommodated. We investigate the lattice of subvarieties of pointed left-residuated $$\ell $$ ℓ -groupoids, their ideals, and develop a theory of left nuclei. Finally, we extend some parts of the theory of join-completions of residuated $$\ell $$ ℓ -groupoids to the left-residuated case, giving a new proof of MacLaren’s theorem for orthomodular lattices.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 164
Author(s):  
Songsong Dai

This paper studies rough approximation via join and meet on a complete orthomodular lattice. Different from Boolean algebra, the distributive law of join over meet does not hold in orthomodular lattices. Some properties of rough approximation rely on the distributive law. Furthermore, we study the relationship among the distributive law, rough approximation and orthomodular lattice-valued relation.


2010 ◽  
Vol 60 (6) ◽  
Author(s):  
Jiří Rachůnek ◽  
Dana Šalounová

AbstractBounded Rℓ-monoids form a large subclass of the class of residuated lattices which contains certain of algebras of fuzzy and intuitionistic logics, such as GMV-algebras (= pseudo-MV-algebras), pseudo-BL-algebras and Heyting algebras. Moreover, GMV-algebras and pseudo-BL-algebras can be recognized as special kinds of pseudo-MV-effect algebras and pseudo-weak MV-effect algebras, i.e., as algebras of some quantum logics. In the paper, bipartite, local and perfect Rℓ-monoids are investigated and it is shown that every good perfect Rℓ-monoid has a state (= an analogue of probability measure).


Sign in / Sign up

Export Citation Format

Share Document