scholarly journals Blow-up profile of neutron stars in the Hartree–Fock–Bogoliubov theory

Author(s):  
Dinh-Thi Nguyen
Author(s):  
Toshiyuki Okihashi ◽  
Masayuki Matsuo

Abstract We study proximity effect of pair correlation in the inner crust of neutron stars by means of the Skyrme-Hartree-Fock-Bogoliubov theory formulated in the coordinate space. We describe a system composed of a nuclear cluster immersed in neutron superuid, which is confined in a spherical box. Using a density-dependent effective pairing interaction which reproduces both the pair gap of neutron matter obtained in ab initio calculations and that of finite nuclei, we analyze how the pair condensate in neutron superuid is affected by the presence of the nuclear cluster. It is found that the proximity effect is characterized by the coherence length of neutron superuid measured from the edge position of the nuclear cluster. The calculation predicts that the proximity effect has a strong density dependence. In the middle layers of the inner crust with baryon density 5 × 10-4 fm-3 ≲ ρb ≲ 2 × 10-2 fm-3, the proximity effect is well limited in the vicinity of the nuclear cluster, i.e. in a sufficiently smaller area than the Wigner-Seitz cell. On the contrary, the proximity effect is predicted to extend to the whole volume of the Wigner-Seitz cell in shallow layers of the inner crust with ρb ≲ 2 × 10-4 fm-3, and in deep layers with ρb ≲ 5 × 10-2 fm-3.


2012 ◽  
Vol 27 (28) ◽  
pp. 1250162 ◽  
Author(s):  
TUNCAY BAYRAM

Constrained Hartree–Fock–Bogoliubov theory with SLy4 and SLy5 Skyrme forces is used to investigate the shape transition between spherical and γ-unstable nuclei in 38–66 Ti . By examining potential energy curves and neutron single-particle levels of even–even Ti isotopes, 46,52,60 Ti are suggested as possible candidates of the nuclei with E(5) symmetry.


2012 ◽  
Vol 86 (6) ◽  
Author(s):  
L. M. Robledo ◽  
R. Bernard ◽  
G. F. Bertsch

2008 ◽  
Vol 17 (09) ◽  
pp. 1765-1773 ◽  
Author(s):  
JIGUANG CAO ◽  
ZHONGYU MA ◽  
NGUYEN VAN GIAI

The microscopic properties and superfluidity of the inner crust in neutron stars are investigated in the framework of the relativistic mean field(RMF) model and BCS theory. The Wigner-Seitz(W-S) cell of inner crust is composed of neutron-rich nuclei immersed in a sea of dilute, homogeneous neutron gas. The pairing properties of nucleons in the W-S cells are treated in BCS theory with Gogny interaction. In this work, we emphasize on the choice of the boundary conditions in the RMF approach and superfluidity of the inner crust. Three kinds of boundary conditions are suggested. The properties of the W-S cells with the three kinds of boundary conditions are investigated. The neutron density distributions in the RMF and Hartree-Fock-Bogoliubov(HFB) models are compared.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 470
Author(s):  
Valentin Allard ◽  
Nicolas Chamel

Temperature and velocity-dependent 1S0 pairing gaps, chemical potentials and entrainment matrix in dense homogeneous neutron–proton superfluid mixtures constituting the outer core of neutron stars, are determined fully self-consistently by solving numerically the time-dependent Hartree–Fock–Bogoliubov equations over the whole range of temperatures and flow velocities for which superfluidity can exist. Calculations have been made for npeμ in beta-equilibrium using the Brussels–Montreal functional BSk24. The accuracy of various approximations is assessed and the physical meaning of the different velocities and momentum densities appearing in the theory is clarified. Together with the unified equation of state published earlier, the present results provide consistent microscopic inputs for modeling superfluid neutron-star cores.


Sign in / Sign up

Export Citation Format

Share Document