scholarly journals Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region

Author(s):  
Veronica Felli ◽  
Benedetta Noris ◽  
Roberto Ognibene
2010 ◽  
Vol 62 (4) ◽  
pp. 808-826
Author(s):  
Eveline Legendre

AbstractWe study extrema of the first and the second mixed eigenvalues of the Laplacian on the disk among some families of Dirichlet–Neumann boundary conditions. We show that the minimizer of the second eigenvalue among all mixed boundary conditions lies in a compact 1-parameter family for which an explicit description is given. Moreover, we prove that among all partitions of the boundary with bounded number of parts on which Dirichlet and Neumann conditions are imposed alternately, the first eigenvalue is maximized by the uniformly distributed partition.


Author(s):  
H. P. W. Gottlieb

AbstractVarious grometrical properties of a domain may be elicited from the asymptotic expansion of a spectral function of the Laplacian operator for that region with apporpriate boundary conditions. Explicit calculations, using analytical formulae for the eigenvalues, are performed for the cases fo Neumann and mixed boundary conditions, extending earlier work involving Dirichet boundary conditions. Two- and three-dimensional cases are considered. Simply-connected regions dealt with are the rectangle, annular sector, and cuboid. Evaluations are carried out for doubly-connected regions, including the narrow annulus, annular cylinder, and thin concentric spherical cavity. The main summation tool is the Poission summation formula. The calculations utilize asymptotic expansions of the zeros of the eigenvalue equations involving Bessel and related functions, in the cases of curved boundaries with radius ratio near unity. Conjectures concerning the form of the contributions due to corners, edges and vertices in the case of Neumann and mixed boundary conditions are presented.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.


2003 ◽  
Vol 33 (4) ◽  
pp. 860-866 ◽  
Author(s):  
A.C. Aguiar Pinto ◽  
T.M. Britto ◽  
R. Bunchaft ◽  
F. Pascoal ◽  
F.S.S. da Rosa

Sign in / Sign up

Export Citation Format

Share Document