Passive element free variation aware decision circuit for 40 Gb/s CDR application

2019 ◽  
Vol 26 (5) ◽  
pp. 1489-1497
Author(s):  
Madhusudan Maiti ◽  
Anupama Paul ◽  
Suraj Kumar Saw ◽  
Alak Majumder
2014 ◽  
Vol 60 (1-4) ◽  
pp. 87-105 ◽  
Author(s):  
Ryszard Staroszczyk

Abstract The paper is concerned with the problem of gravitational wave propagation in water of variable depth. The problem is solved numerically by applying an element-free Galerkin method. First, the proposed model is validated by comparing its predictions with experimental data for the plane flow in water of uniform depth. Then, as illustrations, results of numerical simulations performed for plane gravity waves propagating through a region with a sloping bed are presented. These results show the evolution of the free-surface elevation, displaying progressive steepening of the wave over the sloping bed, followed by its attenuation in a region of uniform depth. In addition, some of the results of the present model are compared with those obtained earlier by using the conventional finite element method.


1990 ◽  
Vol 26 (2) ◽  
pp. 122 ◽  
Author(s):  
J. Akagi ◽  
Y. Kuriyama ◽  
K. Morizuka ◽  
M. Asaka ◽  
K. Tsuda ◽  
...  

1991 ◽  
Vol 27 (25) ◽  
pp. 2376 ◽  
Author(s):  
K. Runge ◽  
J.L. Gimlett ◽  
R.B. Nubling ◽  
K.C. Wang ◽  
M.F. Chang ◽  
...  
Keyword(s):  

1996 ◽  
Vol 32 (4) ◽  
pp. 393 ◽  
Author(s):  
M. Yoneyama ◽  
E. Sano ◽  
S. Yamahata ◽  
Y. Matsuoka ◽  
M. Yaita

2019 ◽  
Vol 11 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Fengbin Liu ◽  
Qiang Wu ◽  
Yumin Cheng

In this study, based on a nonsingular weight function, the improved element-free Galerkin (IEFG) method is presented for solving elastoplastic large deformation problems. By using the improved interpolating moving least-squares (IMLS) method to form the approximation function, and using Galerkin weak form based on total Lagrange formulation of elastoplastic large deformation problems to form the discretilized equations, which is solved with the Newton–Raphson iteration method, we obtain the formulae of the IEFG method for elastoplastic large deformation problems. In numerical examples, the influences of the penalty factor, scale parameter of influence domain and weight functions on the computational accuracy are analyzed, and the numerical solutions show that the IEFG method for elastoplastic large deformation problems has higher computational efficiency and accuracy.


2020 ◽  
Vol 39 (3) ◽  
pp. 407-437
Author(s):  
Markus Bader

Abstract In German, a verb selected by another verb normally precedes the selecting verb. Modal verbs in the perfect tense provide an exception to this generalization because they require the perfective auxiliary to occur in cluster-initial position according to prescriptive grammars. Bader and Schmid (2009b) have shown, however, that native speakers accept the auxiliary in all positions except the cluster-final one. Experimental results as well as corpus data indicate that verb cluster serialization is a case of free variation. I discuss how this variation can be accounted for, focusing on two mismatches between acceptability and frequency: First, slight acceptability advantages can turn into strong frequency advantages. Second, syntactic variants with basically zero frequency can still vary substantially in acceptability. These mismatches remain unaccounted for if acceptability is related to frequency on the level of whole sentence structures, as in Stochastic OT (Boersma and Hayes2001). However, when the acceptability-frequency relationship is modeled on the level of individual weighted constraints, using harmony as link (see Pater2009, for different harmony based frameworks), the two mismatches follow given appropriate linking assumptions.


Sign in / Sign up

Export Citation Format

Share Document