A Novel Experimental Method to Investigate the Seismic Response of Rock Joints Under Obliquely Incident Wave

2019 ◽  
Vol 52 (9) ◽  
pp. 3459-3466 ◽  
Author(s):  
Yang Zou ◽  
Jianchun Li ◽  
Jian Zhao
2021 ◽  
Vol 32 (5) ◽  
pp. 1174-1189
Author(s):  
Hongyun Jiao ◽  
Xiuli Du ◽  
Mi Zhao ◽  
Jingqi Huang ◽  
Xu Zhao ◽  
...  

1974 ◽  
Vol 64 (6) ◽  
pp. 1979-1991 ◽  
Author(s):  
V. Thapliyal

abstract The effects of anisotropy on the reflection of SH-waves (horizontally polarized shear waves) from a transition layer are studied. The transition layer is sand-wiched between two isotropic homogeneous half-spaces and is constituted by a medium which is both anisotropic and inhomogeneous. The SH-wave potentials are obtained for an anisotropic inhomogeneous medium in which both the anisotropy factor (ratio of the horizontal rigidity to the vertical rigidity) and vertical velocity vary with depth. An expression for the reflection coefficient of SH waves is obtained when the material mentioned above forms a finite transition zone between two isotropic homogeneous half-spaces. For further generalization, a second-order discontinuity along with the first-order on eis being assumed in the material properties, at the boundaries of the transition layer. The mathematical and numerical analyses show that the anisotropy factor, found at the top of the transition layer (N0/M0) produces considerable effect on the reflection coefficient for an obliquely incident SH wave. It has been noted that the greater the thickness of the transition layer, the greater is the dependence of the reflection coefficient upon the value of the anisotropy (N0/M0). The minima and maxima of the reflection of seismic energy are found dependent on the value of anisotropy. For greater values of the anisotropy, these maxima and minima shift toward the lower values of the wavelength of the propagating wave (or toward the higher values of the thickness of the transition layer). In fact, the values of the reflection coefficient at which these maxima and minima of seismic energy occur are found greater for the higher values of anisotropy. The effects of anisotropy are found more pronounced for the larger angles of incidence. This remains so until the angle of refraction becomes imaginary. However, no effects of the anistropy factor are found on the reflection coefficients for a normally incident wave. The results, mentioned above, are therefore discussed only for the obliquely incident wave. A geophysically interesting situation has been chosen for studying, quantitatively, the effects of the anisotropy factor on the reflection of SH waves.


2020 ◽  
Vol 10 (14) ◽  
pp. 4797 ◽  
Author(s):  
Xiaolin Huang ◽  
Shengwen Qi ◽  
Bowen Zheng ◽  
Youshan Liu ◽  
Lei Xue ◽  
...  

A rock mass often contains joints filled with a viscoelastic medium of which seismic response is significant to geophysical exploration and seismic engineering design. Using the propagator matrix method, an analytical model was established to characterize the seismic response of viscoelastic filled joints. Stress wave propagation through a single joint highly depended on the water content and thickness of the filling as well as the frequency and incident angle of the incident wave. The increase in the water content enhanced the viscosity (depicted by quality factor) of the filled joint, which could promote equivalent joint stiffness and energy dissipation with double effects on stress wave propagation. There existed multiple reflections when the stress wave propagated through a set of filled joints. The dimensionless joint spacing was the main controlling factor in the seismic response of the multiple filled joints. As it increased, the transmission coefficient first increased, then it decreased instead, and at last it basically kept invariant. The effect of multiple reflections was weakened by increasing the water content, which further influenced the variation of the transmission coefficient. The water content of the joint filling should be paid more attention in practical applications.


1992 ◽  
Vol 14 (3) ◽  
pp. 201-213 ◽  
Author(s):  
Philip L.-F. Liu ◽  
Yong-Sik Cho ◽  
Jan K. Kostense ◽  
Maarten W. Dingemans

Sign in / Sign up

Export Citation Format

Share Document