rock tunnels
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 61)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
Vol 119 ◽  
pp. 104240
Author(s):  
Guo-Qiang Zhu ◽  
Xia-Ting Feng ◽  
Peng-Zhi Pan ◽  
Yang-Yi Zhou ◽  
Cheng-Xiang Yang ◽  
...  

2022 ◽  
Vol 119 ◽  
pp. 104238
Author(s):  
Huang-Shi Deng ◽  
He-Lin Fu ◽  
Yue Shi ◽  
Yun-Ya Zhao ◽  
Wei-Zhi Hou

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Tao Song ◽  
Tianbin Li ◽  
Lubo Meng ◽  
Chunchi Ma ◽  
Chaofei Li ◽  
...  

The conventional bolts used in surrounding rock tunnels with large deformation often fail. As a solution to this problem, we developed an extensible bolt with energy-absorbing and constant-friction-force (EACF) characteristics. The EACF bolt mainly comprises a damping device, a hollow threaded bolt, a tightening nut, and a face plate. To reveal its working mechanism, the bolt was tested in terms of its friction, displacement, and energy absorption through a modified tensile test device in a laboratory. The static pull-out test results showed that the axial force-displacement curve of the bolt can be mainly divided into three stages: a conical extrusion stage, an elongation stage, and an elastic failure stage. The EACF bolts exhibited stable energy absorption behaviors when subjected to static loading. The maximum constant friction force could be adjusted by increasing the size and diameter of the straight section of the damping block, and the maximum elongation could be adjusted by increasing the length of the damping cylinder. When the properties of the bolt materials are kept constant, increasing the diameter of the damping block can help achieve a high constant resistance. The proposed EACF bolt has reliable deformation and energy-absorption properties, which ensure its stability when employed in tunnels under the combined action of support and surrounding rocks.


2021 ◽  
Vol 32 (5) ◽  
pp. 1174-1189
Author(s):  
Hongyun Jiao ◽  
Xiuli Du ◽  
Mi Zhao ◽  
Jingqi Huang ◽  
Xu Zhao ◽  
...  

2021 ◽  
Vol 15 (58) ◽  
pp. 128-150
Author(s):  
Wadslin Frenelus ◽  
Hui Peng ◽  
Jingyu Zhang

Rocks are frequently host materials for underground structures, particularly for deep Tunnels. Their behavior plays a fundamental role in the overall stability of these structures. In fact, the erection of deep tunnels imposes rocks excavations around the defined routes. These excavations are generally carried out by various methods of which the most used are Drill-and-Blast (DB) and Tunnel Boring Machine (TBM).  However, regardless of the tunnelling method used, the impacts such as the perturbation of the initial stress field in rocks and the release of the stored energy are always significant. The impacts produce damage, fractures and deformations which are generally time-dependent and influence the long-term stability of deep tunnels built in rocks. Thus, by considering the aforementioned excavation methods, this paper identifies, reviews and describes the relevant factors generated during and after rock excavations. Interestingly, such factors directly or indirectly influence the long-term stability and therefore the structural integrity of deep rock tunnels. In addition, some recommendations and proposals for future works are presented. This paper can provide useful references in understanding the degradations, damage and fractures generated by tunnelling methods and facilitate suitable actions to ensure long-term stability of deep underground structures.


2021 ◽  
Vol 115 ◽  
pp. 104020
Author(s):  
Xiangyu Xu ◽  
Zhijun Wu ◽  
Hao Sun ◽  
Lei Weng ◽  
Zhaofei Chu ◽  
...  

Author(s):  
Swapnil Mishra ◽  
Mohammad Zaid ◽  
K. S. Rao ◽  
N. K. Gupta
Keyword(s):  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256243
Author(s):  
Jianjun Zhang ◽  
Baicong Yao ◽  
Yunhe Ao ◽  
Chunzhe Jin ◽  
Chuang Sun

Proper mechanical model selection is critical in tunnel support design and stability analysis, especially to reflect the creep and strain-softening behavior of soft rock. We present a coupled nonlinear Burgers strain-softening (NBSS) model and numerical calculation method to investigate the coupled effects of creep and strain-softening of soft rock tunnels. The nonlinear elastic-viscous model is used to simulate the steady creep behavior of mudstone, and the nonlinear viscoplastic strain-softening model is used to simulate the accelerated creep behavior and post-peak strength attenuation behavior. The experimental results show that the viscoplastic parameters and post-peak softening parameters of mudstone are highly sensitive to confining pressure and exhibit nonlinear characteristics. The accelerated creep curve obtained by the numerical calculation is consistent with the experiments, which verifies the model reliability. We use the NBSS and nonlinear Burgers Mohr-Coulomb (NBMC) models to calculate the plastic zone distribution characteristics and deformation law. The distribution of the plastic zone calculated by the NBSS model is larger with more localized fractures. The NBSS model is useful for studying the evolution of stress and displacement fields of complex surrounding rock mass, which provides important theoretical guidelines for the support design and stability analysis of soft rock tunnel engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Qi Yanli ◽  
Wen Shaoquan ◽  
Bai Mingzhou ◽  
Shi Hai ◽  
Li Pengxiang ◽  
...  

In the process of tunnel construction, the bias of layered rock mass tunnels has always been a prominent problem that troubles the construction and safe operation of tunnels. In this paper, a comprehensive method that combines monitoring technology and discrete element (3DEC) numerical simulation is proposed to analyze the deformation characteristics of the surrounding rock in the layered rock tunnel and the deformation law of the bias tunnel. The results indicate that the tunnel surrounding rock deformation in the study area showed the characteristics of bias. Based on the bias mechanism, the surrounding rock deformation law, the construction deformation control, and the optimization measures of layered rock mass in the bias tunnel were studied by means of combining monitoring technology with discrete element (3DEC) numerical simulation. Based on the research results, appropriate methods for controlling the deformation of the surrounding rock of the tunnel with comprehensive consideration of the anchor rod length, anchor rod angle, and anchor rod layout spacing were proposed. The method proposed in this paper could visually reveal the deformation characteristics of the surrounding rock of layered rock tunnels and the deformation law of bias tunnels. It could also better solve the problem of deformation control in the tunnel construction process. This approach provides a novel idea for special layered rock mass tunnel bias evaluation and deformation control parameter optimization and serves as a valuable reference for analogous engineering cases through engineering case analysis.


Sign in / Sign up

Export Citation Format

Share Document