Axial Fracture Initiation During Diagnostic Fracture Injection Tests and Its Impact on Interpretations

Author(s):  
Y. Cai ◽  
A. Dahi Taleghani
2021 ◽  
Author(s):  
Yuzhe Cai ◽  
Arash Dahi Taleghani ◽  
Rui Wang

Abstract Diagnostic fracture injection tests (DFIT) are used widely in the unconventional reservoirs to obtain formation properties. These properties can be crucial in optimizing primary and infill completions. The interpretation methods are assuming that pumping fluid would create a single planar fracture, however, perforation frictions and near wellbore stress concentration may accommodate initiation of fractures along the casing first (axial fractures). The possibility of the formation of an axial fracture increases in high injection rates and low differential stresses. In this study, we investigate the effect of the formation of an additional axial fracture on a DFIT test and its interpretation, using a fully coupled geomechanics and fluid flow model. We provide a model for the initiation and closure of axial and transverse fractures during the process. We also demonstrate that the estimate of the closure stress can be misleading when presence of an additional axial fracture is ignored. Finally, we discuss a potential method to determine the maximum horizontal stress under such circumstances. In fact, the variations in cement quality, cement type and its placement play roles in linking of adjacent perforations and form axial fractures, therefore it might be difficult to establish a safe perforation design to avoid initiation of axial fractures, but we can adjust our analysis to incorporate axial fractures effect.


Author(s):  
Manfred Staat

AbstractExtension fractures are typical for the deformation under low or no confining pressure. They can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. In this article, it is shown that the simple extension strain criterion makes unrealistic strength predictions in biaxial compression and tension. To overcome this major limitation, a new extension strain criterion is proposed by adding a weighted principal shear component to the simple criterion. The shear weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr–Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting extension failure modes, which are unexpected in the classical understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain leading to dilatancy. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak stress CP. Different from compressive loading, tensile loading requires only a limited number of critical cracks to cause failure. Therefore, for tensile stresses, the failure criteria must be modified somehow, possibly by a cut-off corresponding to the CI stress. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Markus Greinwald ◽  
Emily K. Bliven ◽  
Alex Trompeter ◽  
Peter Augat

Abstract Hexapod-ring-fixators have a characteristic rattling sound during load changes due to play in the hexapod struts. This play is perceived as unpleasant by patients and can lead to frame instability. Using slotted-ball-instead of universal-joints for the ring-strut connection could potentially resolve this problem. The purpose of the study was to clarify if the use of slotted-ball-joints reduces play and also fracture gap movement. A hexapod-fixator with slotted-ball-joints and aluminum struts (Ball-Al) was compared to universal-joint-fixators with either aluminum (Uni Al) or steel struts (Uni Steel). Six fixator frames each were loaded in tension, compression, torsion, bending and shear and mechanical performance was analyzed in terms of movement, stiffness and play. The slotted-ball-joint fixator was the only system without measurable axial play (<0.01 mm) compared to Uni-Al (1.2 ± 0.1) mm and Uni-Steel (0.6 ± 0.2) mm (p≤0.001). In both shear directions the Uni-Al had the largest play (p≤0.014). The resulting axial fracture gap movements were similar for the two aluminum frames and up to 25% smaller for the steel frame, mainly due to the highest stiffness found for the Uni-Steel in all loading scenarios (p≤0.036). However, the Uni-Steel construct was also up to 29% (450 g) heavier and had fewer usable mounting holes. In conclusion, the slotted-ball-joints of the Ball-Al fixator reduced play and minimized shear movement in the fracture while maintaining low weight of the construct. The heavier and stiffer Uni-Steel fixator compensates for existing play with a higher overall stiffness.


1986 ◽  
Vol 30 (4) ◽  
pp. 261-273
Author(s):  
G. O. Omoike ◽  
C. R. Vilmann
Keyword(s):  

1976 ◽  
Vol 43 (1) ◽  
pp. 112-116 ◽  
Author(s):  
L. B. Freund ◽  
G. Herrmann

The dynamic fracture response of a long beam of brittle elastic material subjected to pure bending is studied. If the magnitude of the applied bending moment is increased to a critical value, a crack will propagate from the tensile side of the beam across a cross section. An analysis is presented by means of which the crack length and bending moment at the fracturing section are determined as functions of time after fracture initiation. The main assumption on which the analysis rests is that, due to multiple reflections of stress waves across the thickness of the beam, the stress distribution on the prospective fracture plane ahead of the crack may be adequately approximated by the static distribution appropriate for the instantaneous crack length and net section bending moment. The results of numerical calculations are shown in graphs of crack length, crack tip speed, and fracturing section bending moment versus time. It is found that the crack tip accelerates very quickly to a speed near the characteristic terminal speed for the material, travels at this speed through most of the beam thickness, and then rapidly decelerates in the final stage of the process. The results also apply for plane strain fracture of a plate in pure bending provided that the value of the elastic modulus is appropriately modified.


2015 ◽  
Vol 20 (2) ◽  
pp. 407-419
Author(s):  
Panayiotis A. Kakavas ◽  
Alexander V. Perig
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document