coupled geomechanics
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yuzhe Cai ◽  
Arash Dahi Taleghani

Abstract Infill completions have been explored by many operators in the last few years as a strategy to increase ultimate recovery from unconventional shale oil reservoirs. The stimulation of infill wells often causes pressure increases, known as fracture-driven interactions (FDIs), in nearby wells. Studies have generally focused on the propagation of fractures from infill wells and pressure changes in treatment wells rather than observation wells. Meanwhile, studies regarding the pressure response in the observation (parent) wells are mainly limited to field observations and conjecture. In this study, we provide a partialcorrective to this gap in the research.We model the pressure fluctuations in parent wells induced by fracking infill wells and provide insight into how field operators can use the pressure data from nearby wells to identify different forms of FDI, including fracture hit (frac-hit) and fracture shadowing. First,we model the trajectory of a fracture propagating from an infill well using the extended finite element methods (XFEM). This method allows us to incorporatethe possible intersection of fractures independent of the mesh gridding. Subsequently, we calculate the pressure response from the frac-hit and stress shadowing using a coupled geomechanics and multi-phase fluid flow model. Through numerical examples, we assess different scenarios that might arise because of the interactions between new fractures and old depleted fractures based on the corresponding pressure behavior in the parent wells. Typically, a large increase in bottomhole pressure over a short period is interpreted as a potential indication of a fracture hit. However, we show that a slower increase in bottomhole pressure may also imply a fracture hit, especially if gas repressurization was performed before the infill well was fracked. Ultimately, we find that well storage may buffer the sudden increase in pressure due to the frac-hit. We conclude by summarizing the different FDIs through their pressure footprints.


2021 ◽  
Author(s):  
Yuzhe Cai ◽  
Arash Dahi Taleghani ◽  
Rui Wang

Abstract Diagnostic fracture injection tests (DFIT) are used widely in the unconventional reservoirs to obtain formation properties. These properties can be crucial in optimizing primary and infill completions. The interpretation methods are assuming that pumping fluid would create a single planar fracture, however, perforation frictions and near wellbore stress concentration may accommodate initiation of fractures along the casing first (axial fractures). The possibility of the formation of an axial fracture increases in high injection rates and low differential stresses. In this study, we investigate the effect of the formation of an additional axial fracture on a DFIT test and its interpretation, using a fully coupled geomechanics and fluid flow model. We provide a model for the initiation and closure of axial and transverse fractures during the process. We also demonstrate that the estimate of the closure stress can be misleading when presence of an additional axial fracture is ignored. Finally, we discuss a potential method to determine the maximum horizontal stress under such circumstances. In fact, the variations in cement quality, cement type and its placement play roles in linking of adjacent perforations and form axial fractures, therefore it might be difficult to establish a safe perforation design to avoid initiation of axial fractures, but we can adjust our analysis to incorporate axial fractures effect.


SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 2098-2118 ◽  
Author(s):  
Xin Li ◽  
Xiang Li ◽  
Dongxiao Zhang ◽  
Rongze Yu

Summary In the development of fractured reservoirs, geomechanics is crucial because of the stress sensitivity of fractures. However, the complexities of both fracture geometry and fracture mechanics make it challenging to consider geomechanical effects thoroughly and efficiently in reservoir simulations. In this work, we present a coupled geomechanics and multiphase-multicomponent flow model for fractured reservoir simulations. It models the solid deformation using a poroelastic equation, and the solid deformation effects are incorporated into the flow model rigorously. The noticeable features of the proposed model are it uses a pseudocontinuum equivalence method to model the mechanical characteristics of fractures; the coupled geomechanics and flow equations are split and sequentially solved using the fixed-stress splitting strategy, which retains implicitness and exhibits good stability; and it simulates geomechanics and compositional flow, respectively, using a dual-grid system (i.e., the geomechanics grid and the reservoir-flow grid). Because of the separation of the geomechanics part and the flow part, the model is not difficult to implement based on an existing reservoir simulator. We validated the accuracy and stability of this model through several benchmark cases and highlighted the practicability with two large-scale cases. The case studies demonstrate that this model is capable of considering the key effects of geomechanics in fractured-reservoir simulation, including matrix compaction, fracture normal deformation, and shear dilation, as well as hydrocarbon phase behavior. The flexibility, efficiency, and comprehensiveness of this model enable a more realistic geocoupled reservoir simulation.


2020 ◽  
Author(s):  
Jihoon Kim ◽  
I.Yucel Akkutlu ◽  
Tim Kneafsey ◽  
Joo Yong Lee ◽  
George J. Moridis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document