initiation pressure
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 25)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Guojun Liu ◽  
Yuan Zhao ◽  
Yugang Cheng

This paper examines the fracture propagation problems of supercritical carbon fracturing in low permeability shale. Acoustic emission monitoring and computerized tomography (CT) scanning methods were used to study the influence of initial stress ratios on crack initiation and propagation crack in fracturing experiments. The results show that crack initiation pressure and crack morphology are very different under different stress conditions. Under the condition of constant confining pressure, when the initial stress ratio λ = 1, cracks are mainly in a horizontal direction; while for an initial stress ratio of λ < 1, cracks are mainly in a vertical direction. With the decrease of λ, crack initiation pressure, reopening pressure, and fracturing liquid volume also decrease, and crack propagation is not as obvious. According to CT scanning results, the crack propagation direction is the same as the maximum principal stress, and fewer cracks are initiated with a smaller initial stress ratio. Based on the acoustic emission characteristics, the fracturing process (including crack initiation, propagation, and closure), can be divided into three stages: 1) the pressure accumulation in the wellbore, 2) Pump Closure; and 3) crack reopening. This study provides the basis for a reasonable selection of shale gas fracturing formation and geo-sequestration of greenhouse gas CO2.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yongtao Zhang ◽  
Hao Jin ◽  
Bumin Guo ◽  
Shoumei Qiu ◽  
Peng Yang ◽  
...  

Due to the limited space of offshore platform, it is unable to implement large-scale multistage hydraulic fracturing for the horizontal well in Lufeng offshore oilfield. Thus, multistage hydraulic fracturing technology in directional well was researched essentially to solve this problem. Modeling of fracture propagation during multistage fracturing in the directional and horizontal wells in artificial cores was carried out based on a true triaxial hydraulic fracturing simulation experiment system. The effects of horizontal stress difference, stage spacing, perforation depth, and well deviation angle on multifracture propagation were investigated in detail. Through the comparative analysis of the characteristics of postfrac rock and pressure curves, the following conclusions were obtained: (1) multistage fracturing in horizontal wells is conducive to create multiple transverse fractures. Under relatively high horizontal stress difference coefficient (1.0) and small stage spacing conditions, fractures tend to deflect and merge due to the strong stress interference among multiple stages. As a consequence, the initiation pressure for the subsequent stages increases by more than 8%, whereas in large stage spacing conditions, the interference is relatively lower, resulting in the relatively straight fractures. (2) Deepening perforation holes can reduce the initiation pressure and reduce the stress interference among stages. (3) When the projection trace of directional wellbore on horizontal plane is consistent with the direction of the minimum horizontal principal stress, fractures intersecting the wellbore obliquely are easily formed by multistage fracturing. With the decrease of well deviation angle, the angle between fracture surface and wellbore axis decreases, which is not conducive to the uniform distribution of multiple fractures. (4) When there is a certain angle between the projection trace of directional wellbore on horizontal plane and the direction of minimum horizontal principal stress, the growth of multiple fractures is extremely ununiform and the fracture paths are obviously tortuous.


2021 ◽  
Vol 15 (58) ◽  
pp. 1-20
Author(s):  
Qingchao Li ◽  
Liang Zhou ◽  
Zhi-Min Li ◽  
Zhen-Hua Liu ◽  
Yong Fang ◽  
...  

Hydraulic fracturing with oriented perforations is an effective technology for reservoir stimulation for gas development in shale reservoirs. However, fracture reorientation during fracturing operation can affect the fracture conductivity and hinder the effective production of shale gas. In the present work, a numerical simulation model for investigating fracture reorientation during fracturing with oriented perforations was established, and it was verified to be suitable for all investigations in this paper. Based on this, factors (such as injection rate and fluid viscosity) affecting both of initiation and reorientation of the hydraulically induced fractures were investigated. The investigation results show that the fluid viscosity has little effect on initiation pressure of hydraulically induced fracture during fracturing operation, and the initiation pressure is mainly affected by perforation azimuth, injection rate and the stress difference. Moreover, the investigation results also show that perforation azimuth and difference between two horizontal principle stresses are the two most important factors affecting fracture reorientation. Based on the investigation results, the optimization of fracturing design can be achieved by adjusting some controllable factors. However, the regret is that the research object herein is a single fracture, and the interaction between fractures during fracturing operation needs to be further explored.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4040
Author(s):  
Weige Han ◽  
Zhendong Cui ◽  
Zhengguo Zhu

When the shale gas reservoir is fractured, stress shadows can cause reorientation of hydraulic fractures and affect the complexity. To reveal the variation of stress shadow with perforation spacing, the numerical model between different perforation spacing was simulated by the extended finite element method (XFEM). The variation of stress shadows was analyzed from the stress of two perforation centers, the fracture path, and the ratio of fracture length to spacing. The simulations showed that the reservoir rock at the two perforation centers is always in a state of compressive stress, and the smaller the perforation spacing, the higher the maximum compressive stress. Moreover, the compressive stress value can directly reflect the size of the stress shadow effect, which changes with the fracture propagation. When the fracture length extends to 2.5 times the perforation spacing, the stress shadow effect is the strongest. In addition, small perforation spacing leads to backward-spreading of hydraulic fractures, and the smaller the perforation spacing, the greater the deflection degree of hydraulic fractures. Additionally, the deflection angle of the fracture decreases with the expansion of the fracture. Furthermore, the perforation spacing has an important influence on the initiation pressure, and the smaller the perforation spacing, the greater the initiation pressure. At the same time, there is also a perforation spacing which minimizes the initiation pressure. However, when the perforation spacing increases to a certain value (the result of this work is about 14 m), the initiation pressure will not change. This study will be useful in guiding the design of programs in simultaneous fracturing.


2021 ◽  
pp. 014459872110289
Author(s):  
Liangwei Li ◽  
Wenbin Wu

Triaxial hydraulic fracturing experiments were used to study the initiation pressure variation and acoustic emission characteristics of different guide seams sizes during roof hydraulic fracturing. Numerical simulations were used to explore the feasibility of multiple boreholes with prefabricated guide seams. An experiment of hydraulic fracturing on a pillar-free working face was also carried out in a coal mine. The results show that the specimens with guide seams reduced the initiation pressure, with the number of acoustic emission events and initiation pressure being inversely proportional to the size of the guide seams. Specimens without guide seams were deflected by stress and produced multi-level cracks, while the specimens with guide seams did not produce large secondary cracks and deflection. When the stress difference was small, three holes penetrated but not under large stress differences. The hydraulic fracturing technology of prefabricated longitudinal guide seams was tested in the Ningtiaota Coal Mine, and the auxiliary transportation roadway of S1201 working face was successfully retained for reuse in adjacent working faces.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Yu Bai ◽  
Shangqi Liu ◽  
Zhaohui Xia ◽  
Yuxin Chen ◽  
Guangyue Liang ◽  
...  

Abstract Compared with conventional hydraulic fracturing, radial-drilling fracturing presents remarkable advantages and can effectively develop low-permeability reservoirs. The radial borehole can reduce formation fracture pressure and guide the fracture initiation and propagation. Due to the large radial borehole azimuth or the strong anisotropy of the reservoir, the single radial borehole may not efficiently guide the fracture propagation. The researchers proposed multibranched radial-drilling fracturing. However, the research on fracture initiation of multibranched radial-drilling fracturing is inadequate. Radial boreholes usually need certain dip angles to avoid penetrating the interlayer, but the effect of dip angle on the stress field has never been considered before. In this paper, an analytical model for predicting stress distribution around the main wellbore with multiradial boreholes of arbitrary dip angle, azimuth angle, and phase angle is established for the first time, taking full account of the influences of in situ stress, internal pressure, and fracture fluid infiltration on the stress field. The model is utilized to calculate the fracture initiation pressure (FIP) and point out the specific fracture initiation location (FIL). The influences of azimuth angle, dip angle, phase angle, depth difference, and the stress profile radius on fracture initiation pressure, fracture initiation location, and maximum tensile stress distribution are investigated, and a series of sensitivity analyses are carried out. The results show that the areas between the radial boreholes and closer to the walls of radial boreholes are more prone to tensile failure, which provides a theoretical basis for radial boreholes guiding fracture initiation. The reduction of phase angle and depth difference enhances the interference between radial wells, which is conductive to the formation of hydraulic fracture networks between them. As the dip angle increases, the stress becomes increasingly concentrated, and the preferential rock tensile failure becomes increasingly easy. The farther the stress profile is from the main wellbore axis, the smaller it will be influenced by the main wellbore. When the distance exceeds 2R, the maximum tensile stress distribution on the profile remains constant. The research enriches the fracture initiation mechanism of multibranched radial-drilling fracturing and provides guidance for optimizing radial borehole layout parameters of hydraulic fracturing directed by multiradial boreholes.


Author(s):  
Zai-Le Zhou ◽  
Dian-Sen Yang ◽  
Wei-Zhong Chen ◽  
Xi Zhang ◽  
Bai-Lin Wu ◽  
...  

2021 ◽  
pp. 014459872110102
Author(s):  
Lu Weiyong ◽  
He Changchun

To better evaluate the spatial steering effect of directional perforation hydraulic fractures, evaluation indexes for the spatial steering effect are first proposed in this paper. Then, these indexes are used to quantitatively evaluate existing physical experimental results. Finally, with the help of RFPA2D-Flow software, the influence of perforation length and azimuth on the spatial steering process of hydraulic fracture are quantitatively analysed using four evaluation indexes. It is shown by the results that the spatial deflection trajectory, deflection distance, deflection angle and initiation pressure of hydraulic fractures can be used as quantitative evaluation indexes for the spatial steering effect of hydraulic fractures. The deflection paths of directional perforation hydraulic fractures are basically the same. They all gradually deflect to the maximum horizontal principal stress direction from the perforation hole and finally represent a double-wing bending fracture. The deflection distance, deflection angle and initiation pressure of hydraulic fractures increase gradually with increasing perforation azimuth, and the sensitivity of the deflection angle to the perforation azimuth of hydraulic fractures also increases. With increasing perforation length, the deflection distance of hydraulic fractures increases gradually. However, the deflection angle and initiation pressure decrease gradually, as does the sensitivity.


Sign in / Sign up

Export Citation Format

Share Document