Electrochemical sensing of hydrogen peroxide using a glassy carbon electrode modified with multiwalled carbon nanotubes and zein nanoparticle composites: application to HepG2 cancer cell detection

2020 ◽  
Vol 187 (2) ◽  
Author(s):  
Hamed Tavakkoli ◽  
Morteza Akhond ◽  
Gholam Abbas Ghorbankhani ◽  
Ghodratollah Absalan

A modified glassy carbon electrode (GCE) compositing multi-walled carbon nanotubes (MWCNTs), Nafion and bismuth film was prepared and applied for the sensitive detection of trace Pb (II). MWCNTs were dispersed into ethanol by ultrasonication in the presence of Nafion and the nanotubes are coated onto the bare GCE. After that, an extra Nafion adhesion agent is added to the electrode. By the in situ plating, a bismuth film was fabricated on the MWCNTs-NA/GCE, making the desired electrode, MWCNTs-NA-Bi/GCE. The modified electrode was characterized by differential pulse anodic stripping voltammetry, scanning electron microscopy, and cyclic voltammetry. A deposition potential of –1.4 V (vs. Ag/AgCl) and a deposition time of 300 s were applied to the working electrode under stirred conditions after optimizing. Nanotubes and Nafion concentrations and pH were carefully optimized to determine trace lead ions by using the electrode as an electrochemical-sensing platform. Nafion effectively increased the stability and adhesivity of the composite film. The MWCNTs-NA-Bi film modified electrode can remarkably increase the anodic peak current of Pb2+. The sensitivity of MWCNTs-NA-Bi/GCE is 4.35 times higher than that of the bare GCE with bismuth film. The prepared electrode showed excellent stability and reproducibility and can be applied for determination of Pb2+ contained wastewater.


2012 ◽  
Vol 90 (6) ◽  
pp. 517-525 ◽  
Author(s):  
Youqin Liu ◽  
Xiuying Tian ◽  
Yun Yan ◽  
Yuehua Xu

Copper hydroxide (oxide) / multiwalled carbon nanotubes nanocomposite-modified glassy carbon electrode (Cuhydroxide/oxide/MWCNTs/GCE) was successfully prepared by a novel film plating / cyclic voltammetry (CV) method, which exhibited marked synergistic catalytic effects on the electro-oxidation of NO2–. The preparation process, impedance behavior, and surface morphology of Cuhydroxide/oxide/MWCNTs/GCE were investigated by CV, electrochemical impedance spectroscopy, and scanning electron microscopy (SEM), respectively. The optimum preparation and test conditions for the electrode to have high catalytic activity were acquired. The linear range between the anodic current (Δia, µA) and NO2– concentration (c, mmol L−1) was 1.0 × 10−4 to 14.0 mmol L−1, and the corresponding calibration curve was Δia = −0.1504 + 57.954c (R = 0.9990, n = 32) with a detection limit of 0.03 µmol L−1 (S/N = 3). The Cuhydroxide/oxide/MWCNTs/GCE prepared in the optimal conditions showed good stability, high selectivity, low detection limit, and quick response (<0.2 s) to NO2– in phosphate buffer (pH 5.29) at 0.78 V, which has been successfully applied to the determination of NO2– in pickled vegetables with satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document