scholarly journals A central limit theorem for integer partitions

2009 ◽  
Vol 161 (1) ◽  
pp. 85-114 ◽  
Author(s):  
Manfred Madritsch ◽  
Stephan Wagner
2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Pierre-Loïc Méliot

International audience We show that the shapes of integer partitions chosen randomly according to Schur-Weyl measures of parameter $\alpha =1/2$ and Gelfand measures satisfy Kerov's central limit theorem. Thus, there is a gaussian process $\Delta$ such that under Plancherel, Schur-Weyl or Gelfand measures, the deviations $\Delta_n(s)=\lambda _n(\sqrt{n} s)-\sqrt{n} \lambda _{\infty}^{\ast}(s)$ converge in law towards $\Delta (s)$, up to a translation along the $x$-axis in the case of Schur-Weyl measures, and up to a factor $\sqrt{2}$ and a deterministic remainder in the case of Gelfand measures. The proofs of these results follow the one given by Ivanov and Olshanski for Plancherel measures; hence, one uses a "method of noncommutative moments''. Nous montrons que les formes des partitions d'entiers choisies aléatoirement sous les mesures de Schur-Weyl de paramètre $\alpha =1/2$ et sous les mesures de Gelfand obéissent au théorème central limite de Kerov. Ainsi, il existe un processus gaussien $\Delta$ tel que sous les mesures de Plancherel, de Schur-Weyl ou de Gelfand, les déviations $\Delta_n(s)=\lambda _n(\sqrt{n} s)-\sqrt{n} \lambda _{\infty}^{\ast}(s)$ convergent en loi vers $\Delta (s)$, à une translation près le long de l'axe des abscisses pour les mesures de Schur-Weyl, et à un facteur $\sqrt{2}$ et un reste déterministe près dans le cas des mesures de Gelfand. Les preuves de ces résultats suivent celle donnée par Ivanov et Olshanski pour les mesures de Plancherel; ainsi, on utilise une "méthode de moments non commutatifs''.


2011 ◽  
Vol 48 (02) ◽  
pp. 366-388 ◽  
Author(s):  
Eckhard Schlemm

We consider the first passage percolation problem on the random graph with vertex set N x {0, 1}, edges joining vertices at a Euclidean distance equal to unity, and independent exponential edge weights. We provide a central limit theorem for the first passage times l n between the vertices (0, 0) and (n, 0), thus extending earlier results about the almost-sure convergence of l n / n as n → ∞. We use generating function techniques to compute the n-step transition kernels of a closely related Markov chain which can be used to explicitly calculate the asymptotic variance in the central limit theorem.


2009 ◽  
Vol 30 (5) ◽  
pp. 1343-1369 ◽  
Author(s):  
DANNY CALEGARI ◽  
KOJI FUJIWARA

AbstractA function on a discrete group is weakly combable if its discrete derivative with respect to a combing can be calculated by a finite-state automaton. A weakly combable function is bicombable if it is Lipschitz in both the left- and right-invariant word metrics. Examples of bicombable functions on word-hyperbolic groups include:(1)homomorphisms to ℤ;(2)word length with respect to a finite generating set;(3)most known explicit constructions of quasimorphisms (e.g. the Epstein–Fujiwara counting quasimorphisms).We show that bicombable functions on word-hyperbolic groups satisfy acentral limit theorem: if$\overline {\phi }_n$is the value of ϕ on a random element of word lengthn(in a certain sense), there areEandσfor which there is convergence in the sense of distribution$n^{-1/2}(\overline {\phi }_n - nE) \to N(0,\sigma )$, whereN(0,σ) denotes the normal distribution with standard deviationσ. As a corollary, we show that ifS1andS2are any two finite generating sets forG, there is an algebraic numberλ1,2depending onS1andS2such that almost every word of lengthnin theS1metric has word lengthn⋅λ1,2in theS2metric, with error of size$O(\sqrt {n})$.


2021 ◽  
Vol 36 (2) ◽  
pp. 243-255
Author(s):  
Wei Liu ◽  
Yong Zhang

AbstractIn this paper, we investigate the central limit theorem and the invariance principle for linear processes generated by a new notion of independently and identically distributed (IID) random variables for sub-linear expectations initiated by Peng [19]. It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov’s central limit theorem and invariance principle to the case where probability measures are no longer additive.


Sign in / Sign up

Export Citation Format

Share Document