Evaluation of WRF planetary boundary layer parameterization schemes for simulation of monsoon depressions over India

2019 ◽  
Vol 131 (5) ◽  
pp. 1529-1548 ◽  
Author(s):  
Deepika Rai ◽  
Sandeep Pattnaik
2014 ◽  
Vol 142 (1) ◽  
pp. 163-182 ◽  
Author(s):  
Rebecca Cintineo ◽  
Jason A. Otkin ◽  
Ming Xue ◽  
Fanyou Kong

Abstract In this study, the ability of several cloud microphysical and planetary boundary layer parameterization schemes to accurately simulate cloud characteristics within 4-km grid-spacing ensemble forecasts over the contiguous United States was evaluated through comparison of synthetic Geostationary Operational Environmental Satellite (GOES) infrared brightness temperatures with observations. Four double-moment microphysics schemes and five planetary boundary layer (PBL) schemes were evaluated. Large differences were found in the simulated cloud cover, especially in the upper troposphere, when using different microphysics schemes. Overall, the results revealed that the Milbrandt–Yau and Morrison microphysics schemes tended to produce too much upper-level cloud cover, whereas the Thompson and the Weather Research and Forecasting Model (WRF) double-moment 6-class (WDM6) microphysics schemes did not contain enough high clouds. Smaller differences occurred in the cloud fields when using different PBL schemes, with the greatest spread in the ensemble statistics occurring during and after daily peak heating hours. Results varied somewhat depending upon the verification method employed, which indicates the importance of using a suite of verification tools when evaluating high-resolution model performance. Finally, large differences between the various microphysics and PBL schemes indicate that large uncertainties remain in how these schemes represent subgrid-scale processes.


2013 ◽  
Vol 70 (6) ◽  
pp. 1795-1805 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Song-You Hong ◽  
Yign Noh ◽  
Jimy Dudhia

Abstract Turbulent kinetic energy (TKE) is derived from a first-order planetary boundary layer (PBL) parameterization for convective boundary layers: the nonlocal K-profile Yonsei University (YSU) PBL. A parameterization for the TKE equation is developed to calculate TKE based on meteorological profiles given by the YSU PBL model. For this purpose buoyancy- and shear-generation terms are formulated consistently with the YSU scheme—that is, the combination of local, nonlocal, and explicit entrainment fluxes. The vertical transport term is also formulated in a similar fashion. A length scale consistent with the K profile is suggested for parameterization of dissipation. Single-column model (SCM) simulations are conducted for a period in the second Global Energy and Water Cycle Experiment (GEWEX) Atmospheric Boundary Layer Study (GABLS2) intercomparison case. Results from the SCM simulations are compared with large-eddy simulation (LES) results. The daytime evolution of the vertical structure of TKE matches well with mixed-layer development. The TKE profile is shaped like a typical vertical velocity (w) variance, and its maximum is comparable to that from the LES. By varying the dissipation length from −23% to +13% the TKE maximum is changed from about −15% to +7%. After normalization, the change does not exceed the variability among previous studies. The location of TKE maximum is too low without the effects of the nonlocal TKE transport.


2015 ◽  
Vol 30 (3) ◽  
pp. 591-612 ◽  
Author(s):  
Ariel E. Cohen ◽  
Steven M. Cavallo ◽  
Michael C. Coniglio ◽  
Harold E. Brooks

Abstract The representation of turbulent mixing within the lower troposphere is needed to accurately portray the vertical thermodynamic and kinematic profiles of the atmosphere in mesoscale model forecasts. For mesoscale models, turbulence is mostly a subgrid-scale process, but its presence in the planetary boundary layer (PBL) can directly modulate a simulation’s depiction of mass fields relevant for forecast problems. The primary goal of this work is to review the various parameterization schemes that the Weather Research and Forecasting Model employs in its depiction of turbulent mixing (PBL schemes) in general, and is followed by an application to a severe weather environment. Each scheme represents mixing on a local and/or nonlocal basis. Local schemes only consider immediately adjacent vertical levels in the model, whereas nonlocal schemes can consider a deeper layer covering multiple levels in representing the effects of vertical mixing through the PBL. As an application, a pair of cold season severe weather events that occurred in the southeastern United States are examined. Such cases highlight the ambiguities of classically defined PBL schemes in a cold season severe weather environment, though characteristics of the PBL schemes are apparent in this case. Low-level lapse rates and storm-relative helicity are typically steeper and slightly smaller for nonlocal than local schemes, respectively. Nonlocal mixing is necessary to more accurately forecast the lower-tropospheric lapse rates within the warm sector of these events. While all schemes yield overestimations of mixed-layer convective available potential energy (MLCAPE), nonlocal schemes more strongly overestimate MLCAPE than do local schemes.


Sign in / Sign up

Export Citation Format

Share Document