photochemical model
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 22)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
Vol 922 (2) ◽  
pp. L27
Author(s):  
Shang-Min Tsai ◽  
Hamish Innes ◽  
Tim Lichtenberg ◽  
Jake Taylor ◽  
Matej Malik ◽  
...  

Abstract Planets smaller than Neptune and larger than Earth make up the majority of the discovered exoplanets. Those with H2-rich atmospheres are prime targets for atmospheric characterization. The transition between the two main classes, super-Earths and sub-Neptunes, is not clearly understood as the rocky surface is likely not accessible to observations. Tracking several trace gases (specifically the loss of ammonia (NH3) and hydrogen cyanide (HCN)) has been proposed as a proxy for the presence of a shallow surface. In this work, we revisit the proposed mechanism of nitrogen conversion in detail and find its timescale on the order of a million years. NH3 exhibits dual paths converting to N2 or HCN, depending on the UV radiation of the star and the stage of the system. In addition, methanol (CH3OH) is identified as a robust and complementary proxy for a shallow surface. We follow the fiducial example of K2-18b with a 2D photochemical model on an equatorial plane. We find a fairly uniform composition distribution below 0.1 mbar controlled by the dayside, as a result of slow chemical evolution. NH3 and CH3OH are concluded to be the most unambiguous proxies to infer surfaces on sub-Neptunes in the era of the James Webb Space Telescope.


2020 ◽  
Author(s):  
Bilal Benmahi ◽  
Thibault Cavalié ◽  
Michel Dobrijevic ◽  
Nicolas Biver ◽  
Kenneth Bermudez Diaz ◽  
...  

<div class="page" title="Page 1"> <div class="layoutArea"> <div class="column"> <p>In July 1994, comet Shoemaker-Levy 9 collided with Jupiter. This has introduced new chemical species into Jupiter’s atmosphere, notably H2O. We observed the disk-averaged emission H2O in Jupiter’s stratosphere at 556.936 GHz between 2002 and 2019 with the Odin space telescope with the initial goal of better constraining vertical eddy mixing (Kzz) in the layers probed by our observations (0.2-5 mbar).</p> <p>The Odin observations show a decrease of about 40% of the line emission from 2002 to 2019. We analyzed these observations by combining a 1D photochemical model with a radiative transfer model to constrain the vertical eddy diffusion Kzz in the stratosphere of Jupiter. We were able to reproduce this decrease by modifying a well-established Kzz profile, in the 0.2 mbar to 5 mbar pressure range. However, the Kzz obtained is incompatible with observations of the main hydrocarbons. We found that even if we increase locally the initial abundances of H2O and CO at impact, the photochemical conversion of H2O and CO to CO2 does not allow us to find the observed decrease of the H2O emission line over time, suggesting that there is another loss mechanism. We propose that auroral chemistry, not accounted for in our model, as a promising candidate to explain the loss of H2O seen by Odin. Modeling the temporal evolution of the chemical species deposited by comet SL9 in the atmosphere of Jupiter with a 2D photochemical model would be the next step in this study.</p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document