Magneto-thermoelastic response in a functionally graded rotating medium due to a periodically varying heat source

2015 ◽  
Vol 226 (7) ◽  
pp. 2103-2120 ◽  
Author(s):  
P. Pal ◽  
P. Das ◽  
M. Kanoria
2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110178
Author(s):  
Jianhui Tian ◽  
Guoquan Jing ◽  
Xingben Han ◽  
Guangchu Hu ◽  
Shilin Huo

The thermal problem of functionally graded materials (FGM) under linear heat source is studied by a hybrid numerical method. The accuracy of the analytical method and the efficiency of the finite element method are taken into account. The volume fraction of FGM in the thickness direction can be changed by changing the gradient parameters. Based on the weighted residual method, the heat conduction equation under the third boundary condition is established. The temperature distribution of FGM under the action of linear heat source is obtained by Fourier transform. The results show that the closer to the heat source it is, the greater the influence of the heat source is and the influence of the heat source is local. The temperature change trend of the observation points is consistent with the heat source, showing a linear change. The results also show that the higher the value of gradient parameter is, the higher the temperature of location point is. The temperature distribution of observation points is positively correlated with gradient parameter. When the gradient parameter value exceeds a certain value, it has a little effect on the temperature change in the model and the heat conduction in the model tends to be pure metal heat conduction, the optimal gradient parameters combined the thermal insulation property of ceramics and the high strength toughness of metals are obtained.


2020 ◽  
Vol 19 ◽  
pp. 103389 ◽  
Author(s):  
Ahmed E. Abouelregal ◽  
Shao-Wen Yao ◽  
Hijaz Ahmad

2013 ◽  
Vol 332 ◽  
pp. 381-395 ◽  
Author(s):  
Seyed Mohsen Nowruzpour Mehrian ◽  
Mohammad Hasan Naei ◽  
Shahla Zamani Mehrian

Thermal shock describes the way that a material exposed to a sudden change in temperature. These conditions usually take place in aerospace industry, when aircraft encounter the atmosphere layers. It also happens in combustion chamber of engines when mixture of fuel and air ignite in cylinder. Classical thermoelasticity is not capable to analyze such a problem. Therefore, generalized coupled thermoelasticity theories arose. In this article, the dynamic coupled thermoelastic response of a rectangular plate made of functionally graded material subjected to a thermal shock based on Lord-Shulman theory is studied. Using state space approach, the state equations of the problem are obtained. The plate’s boundary condition is simply support on the edges and the variation of mechanical properties is assumed to change along the thickness of the plate. The Laplace transform is applied to transform governing equations from time domain to the Laplace domain. Then by using a numerical method, the equations are solved and the results are inversed to the time domain displacement and temperature field are acquired. Results are presented for different power law indices and they are validated by previous reported literature.


2014 ◽  
Vol 638-640 ◽  
pp. 2082-2091
Author(s):  
John C.C. Lu ◽  
Feng Tsai Lin

Thermoelastic response due to a line heat source is analog to poroelastic reaction caused by a fluid line sink. In this study, the strata are modeled as a thermoelastic or poroelastic half space bounded by horizontal surface in the mathematical model. Thermomechanics and poromechanics are applied on the formulation of basic governing equations, and an analogy is drawn to show the similarity. Using Hankel transform technique and approaching symbolic integral through Mathematica, the closed-form solutions of the horizontal and vertical displacements due to a fluid line sink are obtained. The displacements produced by the line heat source are described through analog quantities between thermoelasticity and poroelasticity. The solutions can be applied to dewater operations and build waste repository.


Sign in / Sign up

Export Citation Format

Share Document