Transient thermopiezoelectric response of a one-dimensional functionally graded piezoelectric medium to a moving heat source

2009 ◽  
Vol 80 (7) ◽  
pp. 803-813 ◽  
Author(s):  
M. H. Babaei ◽  
Z. T. Chen
2008 ◽  
Vol 131 (2) ◽  
Author(s):  
M. Jabbari ◽  
A. H. Mohazzab ◽  
A. Bahtui

This paper presents the analytical solution of one-dimensional mechanical and thermal stresses for a hollow cylinder made of functionally graded material. The material properties vary continuously across the thickness, according to the power functions of radial direction. Temperature distribution is symmetric and transient. The thermal boundary conditions may include conduction, flux, and convection for inside or outside of a hollow cylinder. The thermoelasticity equation is transient, including the moving heat source. The heat conduction and Navier equations are solved analytically, using the generalized Bessel function. A direct method of solution of Navier equation is presented.


2012 ◽  
Vol 151 ◽  
pp. 396-400 ◽  
Author(s):  
Zeng Tao Chen ◽  
Hamid Akbarzadeh ◽  
Hossein Babaei

The multi-physics of piezoelectric materials under different environmental conditions has been an active research subject for a few decades. Particularly, the thermoelastic behaviour of smart materials and structures is of great importance to their reliability in different applications. Traditionally, the Fourier heat conduction theory was introduced in dealing with the thermoelastic reactions of smart materials and structures. This may lead to reasonable analyses and useful guidelines in design of smart structures, especially when no severe thermal gradient is involved. However, when a severe thermal gradient is indeed involved in the service environment of a smart structure, the analysing results based on the Fourier heat conduction theory is unrealistic and usually rendered useless. Non-Fourier heat conduction theories have been introduced in the thermoelastic analysis of smart materials and structures in recent years and resulted in reasonable results. In this paper, we review the recent results of a thermopiezoelectric problem of a one-dimensional (1-D), finite length, functionally graded medium excited by a moving heat source using both the Fourier and Non-Fourier heat conduction theories. Numerical examples are displayed to illustrate the effects of non-homogeneity index, length and thermal relaxation time on the results.


Author(s):  
A H Akbarzadeh ◽  
M H Babaei ◽  
Z T Chen

In this article, the transient thermopiezoelectric behaviour of a one-dimensional (1D) functionally graded piezoelectric medium subjected to a moving heat source is investigated. The formulation is given based on the Chandrasekhariah and Tzou (C–T) generalized thermoelasticity theory to consider the details of energy transport in the material in comparison with the Lord–Shulman (L–S) generalized theory. All material properties are taken to vary exponentially along the length of the medium except for phase lags, the relaxation time, and the specific heat, which are taken to be constant. The governing partial differential equations are given in the three coupled fields of displacement, temperature, and electric potential based on the C–T theory. Using Laplace transform to eliminate the time dependency of the problem, an analytical method is presented to obtain the coupled fields in the Laplace domain. The solutions are then derived in time domain by employing the fast Laplace inversion technique. Numerical results are shown to display the effects of discontinuities on the temperature and stress distribution, non-homogeneity index and the phase-lag constants of heat flux and temperature gradient on the wave propagation of temperature and stress fields based on the dual-phase-lag model of the C–T. Furthermore, the results are compared between the C–T and L–S thermoelasticity theories. Finally, the results are validated with those reported in the literature.


Author(s):  
Mohsen Jabbari ◽  
Amir Hossein Mohazzab ◽  
Ali Bahtui

This paper presents the analytical solution of one-dimensional mechanical and thermal stresses for a hollow cylinder made of functionally graded material. The material properties vary continuously across the thickness, according to power functions of radial direction. Temperature distribution is symmetric, and transient. The thermal boundary conditions may include conduction, flux, and convection for inside or outside of hollow cylinder. Thermoelasticity equation is transient, including the moving heat source. The heat conduction and Navier equations are solved analytically, using the generalized Bessel function. A direct method of solution of Navier equation is presented.


2020 ◽  
Vol 19 ◽  
pp. 103389 ◽  
Author(s):  
Ahmed E. Abouelregal ◽  
Shao-Wen Yao ◽  
Hijaz Ahmad

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3953 ◽  
Author(s):  
Ahmed E. Abouelregal ◽  
Hijaz Ahmad ◽  
Shao-Wen Yao

The current work deals with the study of a thermo-piezoelectric modified model in the context of generalized heat conduction with a memory-dependent derivative. The investigations of the limited-length piezoelectric functionally graded (FGPM) rod have been considered based on the presented model. It is assumed that the specific heat and density are constant for simplicity while the other physical properties of the FGPM rod are assumed to vary exponentially through the length. The FGPM rod is subject to a moving heat source along the axial direction and is fixed to zero voltage at both ends. Using the Laplace transform, the governing partial differential equations have been converted to the space-domain, and then solved analytically to obtain the distributions of the field quantities. Numerical computations are shown graphically to verify the effect of memory presence, graded material properties, time-delay, Kernel function, and the thermo-piezoelectric response on the physical fields.


Sign in / Sign up

Export Citation Format

Share Document