Numerical analysis of wreck removal based on multibody system dynamics

2017 ◽  
Vol 23 (3) ◽  
pp. 521-535
Author(s):  
Seung-Ho Ham ◽  
Myung-Il Roh ◽  
Ju-Sung Kim
2010 ◽  
Author(s):  
Zdravko Terze ◽  
Andreas Müller ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras

AIAA Journal ◽  
2018 ◽  
Vol 56 (2) ◽  
pp. 818-835 ◽  
Author(s):  
Xiaoting Rui ◽  
Laith K. Abbas ◽  
Fufeng Yang ◽  
Guoping Wang ◽  
Hailong Yu ◽  
...  

Author(s):  
H. Ashrafiuon ◽  
N. K. Mani

Abstract The symbolic computing system MACSYMA is used to automatically generate the explicit equations necessary to represent the kinematic constraints and system dynamics and to compute the design sensitivities for optimal design of any multibody system. The logic to construct system matrices and vectors involved in the analysis and design equations is implemented as general purpose MACSYMA programs. All necessary manipulations are performed by MACSYMA and the equations are output as FORTRAN statements that can be compiled and executed. This approach results in a computational saving of up to 95% compared to using a general purpose programs. The approach is general in nature and is applicable to any multibody system. Examples are presented to demonstrate the effectiveness of the approach.


Author(s):  
Jian He ◽  
Dalin Wu ◽  
Jisheng Ma ◽  
Hongkai Wang ◽  
Yuliang Yang

The influence law of a tracked vehicle grouser shape on the soil slide sinkage was investigated in this study via the numerical simulations and physical tests. A finite element model was built using the plastic incremental theory and generalized Hokker’s law, while constitutive soil parameters were obtained via triaxial test. The numerical simulation model was verified by physical test results. Based on the verified numerical simulation model, the influence law of the tracked vehicle grouser shape on the soil slide sinkage was determined. The results show that (1) shear displacement in the lateral direction can increase the soil sinkage in the vertical direction, which is referred to as the “slide sinkage”; (2) there is a linear relationship between the slide sinkage and the shear displacement; (3) the grouser width and height have a positive influence on the amount of slide sinkage. Under the same load, an increase in grouser width and height will cause an increase in the soil slide sinkage. Grouser thickness and pitch have a negative influence on the slide sinkage, and under the same load, increased grouser width and height cause a reduction in the soil slide sinkage. Grouser angle characteristics have no significant effect on the soil sinkage. The application of the slide sinkage in tracked vehicles traveling on soft roads was investigated in multibody system dynamics analysis software Recurdyn to confirm these observations. The results presented in this paper may provide a workable reference for the analysis of tracked vehicles in multibody system dynamics scenarios.


Sign in / Sign up

Export Citation Format

Share Document