tracked vehicle
Recently Published Documents


TOTAL DOCUMENTS

884
(FIVE YEARS 136)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
pp. 525
Author(s):  
Yasuhiro Fukuoka ◽  
Kazuyuki Oshino ◽  
Ahmad Najmuddin Ibrahim

We propose a mechanical design for a simple teleoperated unmanned ground vehicle (UGV) to negotiate uneven terrain. UGVs are typically classified into legged, legged-wheeled, wheeled, and tanked forms. Legged vehicles can significantly shift their center of gravity (COG) by positioning their multi-articulated legs at appropriate trajectories, stepping over a high obstacle. To realize a COG movable mechanism with a small number of joints, a number of UGVs have been developed that can shift their COG by moving a mass at a high position above the body. However, these tend to pose a risk of overturning, and the mass must be moved quite far to climb a high step. To address these issues, we design a novel COG shift mechanism, in which the COG can be shifted forward and backward inside the body by moving most of its internal devices. Since this movable mass includes DC motors for driving both tracks, we can extend the range of the COG movement. We demonstrate that a conventional tracked vehicle prototype can traverse a step and a gap between two steps, as well as climb stairs and a steep slope, with a human operating the vehicle movement and the movable mass position.


2021 ◽  
Vol 45 (12) ◽  
pp. 1167-1176
Author(s):  
Jun Ha Sohn ◽  
Chang-Ho Lee ◽  
Yong-Joo Kim ◽  
Sung-Soo Kim

2021 ◽  
Vol 1 (2) ◽  
pp. 34-40
Author(s):  
Mohd Azman Abas

This study presents a preliminary approach to estimate instantaneous fuel consumption base on image processing from aerial observation using a multi-rotor drone. A drone was deployed over an actual road traffic to capture images of vehicle activities and feed into a program that was developed in this study. The program identifies and tracks the vehicle activities using pixel-based adaptive approach. The vehicle activities were then processed into variables as an input for the generic vehicle model. Coupled with model constants, the generic vehicle model then estimates the instantaneous fuel consumption and CO2 emission and tags the estimated results on the tracked vehicle on the program user-interface. In comparison with the actual experimental measurements, the estimated instantaneous fuel consumption shows a trend with correlation coefficient of 0.741 with higher total fuel usage by 10.6%. The estimation results were useful to map the distribution of fuel consumption over the routes of the observed area in relation to the natural traffic.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Qihui Ling ◽  
Juchuan Dai ◽  
Xingyun He ◽  
Shengzhao Chen ◽  
Zhewu Chen

The dynamic parameter allocation of the suspension system has an important influence on the comprehensive driving performance of the tracked vehicle. Usually, the allocation of suspension parameters is based on a single performance index, which has the disadvantage of not being able to achieve multi-performance optimization. Therefore, a novel optimization method using multi-performance index-oriented is presented. Firstly, considering the vertical vibration excitation caused by road roughness, the input (excitation) model of road roughness is embedded to establish the parametric dynamic model of the tracked vehicle. Then, the evaluation index and its quantitative algorithm, which reflect the multi-aspect performance of the suspension system, are proposed. Moreover, the parameter allocation objective function based on multi-index information fusion is designed. Finally, two allocation optimization methods are presented to solve the parameter allocation, i.e., equal weight allocation and expert knowledge-based weight allocation. By comparing the results obtained by the two methods, it is found that the performance of the suspension system can be improved effectively by optimizing the parameters of suspension stiffness and damping. Furthermore, the optimization of weight allocation based on expert knowledge is more effective. These provide a better knowledge reference for suspension system design.


2021 ◽  
pp. 15-19
Author(s):  

The results of a study of the control processes of an automated transmission and internal combustion engine of a transport unmanned tracked vehicle when the speed of movement is set by an external control device are presented. Keywords: unmanned tracked vehicle, algorithm, motion control, onboard gear unit, programmable logic controller, cruise control. [email protected]


2021 ◽  
Author(s):  
Chunsheng Liu ◽  
Shaopeng Guo ◽  
Yuan Yi ◽  
Li Li ◽  
Xiaohang Shi

2021 ◽  
Author(s):  
Zeyue Tang ◽  
Haiou Liu ◽  
Ziye Zhao ◽  
Jiaxing Lu ◽  
Haijie Guan ◽  
...  

2021 ◽  
pp. 13-25
Author(s):  
Mykhailo Рesterev

ObjectivesDevelopment of movement model of fighting tracked vehicle to study oscillatory processes that cause a dynamic load on the driver’s workplace and imitate real conditions of fighting tracked vehicle’s movement to develop technical requirements for dynamic simulators with the achievement of high degree of their compliance with the real vehicle. Research hypothesis. Use of the improved mobility platform of dynamic simulators, realizing the conditions as close as possible to conditions of driving a real fighting tracked vehicle.MethodsThe presented views are the result of empirical research based on the general scheme of forces acting on a fighting tracked vehicle and allow to theoretically estimate the dynamic load of mechanic-driver's workplace.ResultsIn the study, the author developed an improved model of the movement of a fighting tracked vehicle, which describes the spatial movement of its body in motion on the support surface of a complex profile and allows to estimate theoretically the dynamic workload of the driver’s workplace, which provides a basic design of a dynamic platform in six degrees of freedom and will provide to develop the requirements for the modernization of dynamic simulators.ConclusionsWhen performing combat tasks mechanic-driver of FTV is exposed to the effects of spatial movements of different nature. The mechanic-driver during the movement of FTV feels a wide range of influences that are caused by the interaction of the tracked running gear (TRG) with the bearing surface and change the direction of movement of FTV.


Author(s):  
Yan-Jun Liang ◽  
You-Jun Lu ◽  
De-Xin Gao ◽  
Zhong-Sheng Wang

AbstractTechnique of approximate optimal vibration control and simulation for vehicle active suspension systems are developed. Considered the nonlinear damping of springs, mechanical model and a nonlinear dynamic system for a class of tracked vehicle suspension vibration control are established and the corresponding system of state space form is described. To prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an approximate optimal vibration controller is designed, and an algorithm is presented for the vibration controller. Numerical simulation results illustrate the effectiveness of the proposed technique.


Sign in / Sign up

Export Citation Format

Share Document