Applications of Symbolic Computing for Numerical Analysis of Mechanical Systems

Author(s):  
H. Ashrafiuon ◽  
N. K. Mani

Abstract The symbolic computing system MACSYMA is used to automatically generate the explicit equations necessary to represent the kinematic constraints and system dynamics and to compute the design sensitivities for optimal design of any multibody system. The logic to construct system matrices and vectors involved in the analysis and design equations is implemented as general purpose MACSYMA programs. All necessary manipulations are performed by MACSYMA and the equations are output as FORTRAN statements that can be compiled and executed. This approach results in a computational saving of up to 95% compared to using a general purpose programs. The approach is general in nature and is applicable to any multibody system. Examples are presented to demonstrate the effectiveness of the approach.

Author(s):  
H. Ashrafeiuon ◽  
N. K. Mani

Abstract This paper presents a new approach to optimal design of large multibody spatial mechanical systems. This approach uses symbolic computing to generate the necessary equations for dynamic analysis and design sensitivity analysis. Identification of system topology is carried out using graph theory. The equations of motion are formulated in terms of relative joint coordinates through the use of velocity transformation matrix. Design sensitivity analysis is carried out using the Direct Differentiation method applied to the relative joint coordinate formulation for spatial systems. Symbolic manipulation programs are used to develop subroutines which provide information for dynamic and design sensitivity analysis. These subroutines are linked to a general purpose computer program which performs dynamic analysis, design sensitivity analysis, and optimization. An example is presented to demonstrate the efficiency of the approach.


2012 ◽  
Vol 544 ◽  
pp. 194-199
Author(s):  
Di Zhang ◽  
Shui Ping Sheng ◽  
Zeng Liang Gao

Two important parameters of torispherical head that are (interior radius of spherical crown area) and r (interior radius of transition corner) have been optimized by the module of the large general-purpose finite-element software ANSYS, targeting the strength and stability of the head. This paper provides an optimized torispherical head, which improves the stability of the edge of the head with acceptable strength of the head. The procedure is generally applicable as a design tool for optimal design.


2003 ◽  
Vol 9 (3) ◽  
pp. 770-775 ◽  
Author(s):  
Soon-Cheol Kong ◽  
Seong-Hae Ok ◽  
Young-Wan Choi ◽  
Joong-Seon Choe ◽  
Yong-Hwan Kwon ◽  
...  

2010 ◽  
Author(s):  
Zdravko Terze ◽  
Andreas Müller ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras

AIAA Journal ◽  
2018 ◽  
Vol 56 (2) ◽  
pp. 818-835 ◽  
Author(s):  
Xiaoting Rui ◽  
Laith K. Abbas ◽  
Fufeng Yang ◽  
Guoping Wang ◽  
Hailong Yu ◽  
...  

2021 ◽  
Vol 26 (5) ◽  
pp. 664-673
Author(s):  
Youhui Zhang ◽  
Peng Qu ◽  
Weimin Zheng

Sign in / Sign up

Export Citation Format

Share Document