scholarly journals Nitric oxide generation from heme/copper assembly mediated nitrite reductase activity

2014 ◽  
Vol 19 (4-5) ◽  
pp. 515-528 ◽  
Author(s):  
Shabnam Hematian ◽  
Maxime A. Siegler ◽  
Kenneth D. Karlin
2008 ◽  
Vol 295 (2) ◽  
pp. H743-H754 ◽  
Author(s):  
Peter C. Minneci ◽  
Katherine J. Deans ◽  
Sruti Shiva ◽  
Huang Zhi ◽  
Steven M. Banks ◽  
...  

Hemoglobin (Hb) potently inactivates the nitric oxide (NO) radical via a dioxygenation reaction forming nitrate (NO3−). This inactivation produces endothelial dysfunction during hemolytic conditions and may contribute to the vascular complications of Hb-based blood substitutes. Hb also functions as a nitrite (NO2−) reductase, converting nitrite into NO as it deoxygenates. We hypothesized that during intravascular hemolysis, nitrite infusions would limit the vasoconstrictive properties of plasma Hb. In a canine model of low- and high-intensity hypotonic intravascular hemolysis, we characterized hemodynamic responses to nitrite infusions. Hemolysis increased systemic and pulmonary arterial pressures and systemic vascular resistance. Hemolysis also inhibited NO-dependent pulmonary and systemic vasodilation by the NO donor sodium nitroprusside. Compared with nitroprusside, nitrite demonstrated unique effects by not only inhibiting hemolysis-associated vasoconstriction but also by potentiating vasodilation at plasma Hb concentrations of <25 μM. We also observed an interaction between plasma Hb levels and nitrite to augment nitroprusside-induced vasodilation of the pulmonary and systemic circulation. This nitrite reductase activity of Hb in vivo was recapitulated in vitro using a mitochondrial NO sensor system. Nitrite infusions may promote NO generation from Hb while maintaining oxygen delivery; this effect could be harnessed to treat hemolytic conditions and to detoxify Hb-based blood substitutes.


1973 ◽  
Vol 19 (7) ◽  
pp. 861-872 ◽  
Author(s):  
C. D. Cox Jr. ◽  
W. J. Payne

Nitrite and nitric oxide reductases were found soluble in extracts of Pseudomonas perfectomarinus cultured anaerobically at the expense of nitrate and ruptured with the French pressure cell. Malic enzyme, transhydrogenase, and flavin reductase that provided electron flow for these reductases were soluble as well. Nitrous oxide reductase remained particle-bound. Exogenous NADH was a poor electron donor for crude extracts, but a combination of malate, NADP, and NAD served well in the reduction of nitrite and nitric oxide. Nitrite reductase activity lost on dialysis of crude extract was restored by addition of this combination. Addition of free flavins was required for reduction of nitrite and nitric oxide. A nitrite reductase complex was separated from the nitric oxide reductase by gel filtration and DEAE-cellulose chromatography. NADH was an effective electron donor for this system with flavins provided as well. A c-type cytochrome with a split-α peak (perhaps associated with a d type) and two additional c-type cytochromes were separated from the nitrite reductase fraction. One of the latter (RI) emerged oxidized, the other (RII) reduced. Only nitric oxide oxidized RII. When these cytochromes were added to reaction mixtures containing nitrite reductase, activity was increased most by the split-α fraction. After reduction with dithionite, the absorption spectrum of the split-α cytochrome was returned to the oxidized spectrum by addition of nitrite but not the other oxides. A significant amount of a c-type cytochrome remained bound to the nitric oxide reductase fraction. A combination of malic acid, NAD, and NADP was more effective than NADH as electron donor for this system with free flavins provided as well. Addition of RI increased the rate of nitric oxide reduction by this fraction.


2019 ◽  
Vol 48 (21) ◽  
pp. 7451-7461
Author(s):  
Arnab Kumar Nath ◽  
Chandradeep Ghosh ◽  
Madhuparna Roy ◽  
Manas Seal ◽  
Somdatta Ghosh Dey

The heme(III)-Cu(i)-Aβ complexes relevant to Alzheimer’s disease (AD) can reduce nitrite to nitric oxide (NO) and thus behave as nitrite reductases.


1978 ◽  
Vol 24 (1) ◽  
pp. 45-49 ◽  
Author(s):  
F. Pichinoty ◽  
J.-L. Garcia ◽  
C. Job ◽  
M. Durand

The denitrifying capacity of 15 strains of Bacillus licheniformis was evaluated. In general, N2 production by the cultures on complex media containing NO3− is irregular and quite slow and three of the strains never produce gas. Bacillus licheniformis grows rapidly in anaerobiosis on peptone medium containing NO3− which is reduced to NO2−. None of the strains grow in peptone medium with NO2− or N2O as the respiratory substrate, nor do they grow under an atmosphere of 10% NO–90% N2. Denitrification was studied in cell suspensions using gas chromatography. N2O production from NO3− or NO2− is always weak at best; nitric oxide is reduced to N2O at an appreciable rate. All the strains synthesize nitrate reductase A in anaerobiosis when NO3− is present. In cell extracts, nitrite reductase activity is always negligible or nil with tetramethyl-p-phenylenediamine as an electron donor.


2014 ◽  
Vol 2 (S1) ◽  
Author(s):  
V Simon ◽  
A Dyson ◽  
M Minnion ◽  
M Feelisch ◽  
M Singer

Sign in / Sign up

Export Citation Format

Share Document