La dénitrification chez Bacillus licheniformis

1978 ◽  
Vol 24 (1) ◽  
pp. 45-49 ◽  
Author(s):  
F. Pichinoty ◽  
J.-L. Garcia ◽  
C. Job ◽  
M. Durand

The denitrifying capacity of 15 strains of Bacillus licheniformis was evaluated. In general, N2 production by the cultures on complex media containing NO3− is irregular and quite slow and three of the strains never produce gas. Bacillus licheniformis grows rapidly in anaerobiosis on peptone medium containing NO3− which is reduced to NO2−. None of the strains grow in peptone medium with NO2− or N2O as the respiratory substrate, nor do they grow under an atmosphere of 10% NO–90% N2. Denitrification was studied in cell suspensions using gas chromatography. N2O production from NO3− or NO2− is always weak at best; nitric oxide is reduced to N2O at an appreciable rate. All the strains synthesize nitrate reductase A in anaerobiosis when NO3− is present. In cell extracts, nitrite reductase activity is always negligible or nil with tetramethyl-p-phenylenediamine as an electron donor.

1973 ◽  
Vol 19 (7) ◽  
pp. 861-872 ◽  
Author(s):  
C. D. Cox Jr. ◽  
W. J. Payne

Nitrite and nitric oxide reductases were found soluble in extracts of Pseudomonas perfectomarinus cultured anaerobically at the expense of nitrate and ruptured with the French pressure cell. Malic enzyme, transhydrogenase, and flavin reductase that provided electron flow for these reductases were soluble as well. Nitrous oxide reductase remained particle-bound. Exogenous NADH was a poor electron donor for crude extracts, but a combination of malate, NADP, and NAD served well in the reduction of nitrite and nitric oxide. Nitrite reductase activity lost on dialysis of crude extract was restored by addition of this combination. Addition of free flavins was required for reduction of nitrite and nitric oxide. A nitrite reductase complex was separated from the nitric oxide reductase by gel filtration and DEAE-cellulose chromatography. NADH was an effective electron donor for this system with flavins provided as well. A c-type cytochrome with a split-α peak (perhaps associated with a d type) and two additional c-type cytochromes were separated from the nitrite reductase fraction. One of the latter (RI) emerged oxidized, the other (RII) reduced. Only nitric oxide oxidized RII. When these cytochromes were added to reaction mixtures containing nitrite reductase, activity was increased most by the split-α fraction. After reduction with dithionite, the absorption spectrum of the split-α cytochrome was returned to the oxidized spectrum by addition of nitrite but not the other oxides. A significant amount of a c-type cytochrome remained bound to the nitric oxide reductase fraction. A combination of malic acid, NAD, and NADP was more effective than NADH as electron donor for this system with free flavins provided as well. Addition of RI increased the rate of nitric oxide reduction by this fraction.


1989 ◽  
Vol 35 (11) ◽  
pp. 1061-1064 ◽  
Author(s):  
P. Bonin ◽  
M. Gilewicz ◽  
J. C. Bertrand

Studies on the effect of oxygen on denitrification have shown that denitrification on Pseudomonas nautica 617 can take place in the presence of oxygen. The enzymes associated with denitrification are affected differently with respect to oxygen concentration. Nitrate reductase was less sensitive toward oxygen than nitrite and nitrous oxide reductases. Nitrate reductase activity was completely blocked at an oxygen concentration greater than 4.05 mg/L, compared with 2.15 and 0.25 mg/L for nitrite and nitrous oxide reductases, respectively. After an aerobic–anaerobic shift, nitrate reductase activity remained unchanged whereas the rate of nitrite reductase activity rose to a value only 20% that of the original rate.Key words: denitrification, oxygen, Pseudomonas.


1998 ◽  
Vol 180 (20) ◽  
pp. 5344-5350 ◽  
Author(s):  
Michiko M. Nakano ◽  
Tamara Hoffmann ◽  
Yi Zhu ◽  
Dieter Jahn

ABSTRACT The nitrate and nitrite reductases of Bacillus subtilishave two different physiological functions. Under conditions of nitrogen limitation, these enzymes catalyze the reduction of nitrate via nitrite to ammonia for the anabolic incorporation of nitrogen into biomolecules. They also function catabolically in anaerobic respiration, which involves the use of nitrate and nitrite as terminal electron acceptors. Two distinct nitrate reductases, encoded bynarGHI and nasBC, function in anabolic and catabolic nitrogen metabolism, respectively. However, as reported herein, a single NADH-dependent, soluble nitrite reductase encoded by the nasDE genes is required for both catabolic and anabolic processes. The nasDE genes, together with nasBC(encoding assimilatory nitrate reductase) and nasF(required for nitrite reductase siroheme cofactor formation), constitute the nas operon. Data presented show that transcription of nasDEF is driven not only by the previously characterized nas operon promoter but also from an internal promoter residing between the nasC andnasD genes. Transcription from both promoters is activated by nitrogen limitation during aerobic growth by the nitrogen regulator, TnrA. However, under conditions of oxygen limitation,nasDEF expression and nitrite reductase activity were significantly induced. Anaerobic induction of nasDEFrequired the ResDE two-component regulatory system and the presence of nitrite, indicating partial coregulation of NasDEF with the respiratory nitrate reductase NarGHI during nitrate respiration.


1985 ◽  
Vol 12 (6) ◽  
pp. 631 ◽  
Author(s):  
SF Ledgard ◽  
KC Woo ◽  
FJ Bergersen

The isotopic fractionations of nitrogen during the reduction of NO3- and NO2- in a cytosolic fraction and in a chloroplast preparation from spinach (Spinacia oleracea L.) leaves were determined. The reduction of NO3- to NH3 was studied using a reconstituted system containing cytosolic extract and intact chloroplasts, while a chloroplast system was used for NO2- reduction. In the reconstituted systems the ratio of nitrate reductase activity to nitrite reductase activity had a large effect on the relative amounts of NO2- and NH3 formed. Ammonia predominated when the nitrate reductase to nitrite reductase activity ratio was 1 : 5 and this ratio was used in the isotopic fractionation studies. Significant isotopic fractionation of N was observed in the reconstituted system but not in the chloroplast system. This indicates that the observed isotopic fractionation was associated with the reduction of NO3- to NO2- by nitrate reductase. The isotopic fractionation (i.e. δ15Nproduct - δ15Nsubstrate) for this reaction was - 15‰.


2008 ◽  
Vol 295 (2) ◽  
pp. H743-H754 ◽  
Author(s):  
Peter C. Minneci ◽  
Katherine J. Deans ◽  
Sruti Shiva ◽  
Huang Zhi ◽  
Steven M. Banks ◽  
...  

Hemoglobin (Hb) potently inactivates the nitric oxide (NO) radical via a dioxygenation reaction forming nitrate (NO3−). This inactivation produces endothelial dysfunction during hemolytic conditions and may contribute to the vascular complications of Hb-based blood substitutes. Hb also functions as a nitrite (NO2−) reductase, converting nitrite into NO as it deoxygenates. We hypothesized that during intravascular hemolysis, nitrite infusions would limit the vasoconstrictive properties of plasma Hb. In a canine model of low- and high-intensity hypotonic intravascular hemolysis, we characterized hemodynamic responses to nitrite infusions. Hemolysis increased systemic and pulmonary arterial pressures and systemic vascular resistance. Hemolysis also inhibited NO-dependent pulmonary and systemic vasodilation by the NO donor sodium nitroprusside. Compared with nitroprusside, nitrite demonstrated unique effects by not only inhibiting hemolysis-associated vasoconstriction but also by potentiating vasodilation at plasma Hb concentrations of <25 μM. We also observed an interaction between plasma Hb levels and nitrite to augment nitroprusside-induced vasodilation of the pulmonary and systemic circulation. This nitrite reductase activity of Hb in vivo was recapitulated in vitro using a mitochondrial NO sensor system. Nitrite infusions may promote NO generation from Hb while maintaining oxygen delivery; this effect could be harnessed to treat hemolytic conditions and to detoxify Hb-based blood substitutes.


1998 ◽  
Vol 180 (1) ◽  
pp. 186-189 ◽  
Author(s):  
Tamara Hoffmann ◽  
Nicole Frankenberg ◽  
Marco Marino ◽  
Dieter Jahn

ABSTRACT During anaerobic nitrate respiration Bacillus subtilisreduces nitrate via nitrite to ammonia. No denitrification products were observed. B. subtilis wild-type cells and a nitrate reductase mutant grew anaerobically with nitrite as an electron acceptor. Oxygen-sensitive dissimilatory nitrite reductase activity was demonstrated in cell extracts prepared from both strains with benzyl viologen as an electron donor and nitrite as an electron acceptor. The anaerobic expression of the discovered nitrite reductase activity was dependent on the regulatory system encoded by resDE. Mutation of the gene encoding the regulatory Fnr had no negative effect on dissimilatory nitrite reductase formation.


Sign in / Sign up

Export Citation Format

Share Document