scholarly journals The effect of pH on Marinobacter hydrocarbonoclasticus denitrification pathway and nitrous oxide reductase

2020 ◽  
Vol 25 (7) ◽  
pp. 927-940 ◽  
Author(s):  
Cíntia Carreira ◽  
Rute F. Nunes ◽  
Olga Mestre ◽  
Isabel Moura ◽  
Sofia R. Pauleta
2012 ◽  
Vol 367 (1593) ◽  
pp. 1204-1212 ◽  
Author(s):  
Simone Dell'Acqua ◽  
Sofia R. Pauleta ◽  
José J. G. Moura ◽  
Isabel Moura

Nitrous oxide reductase (N 2 OR) catalyses the final step of the denitrification pathway—the reduction of nitrous oxide to nitrogen. The catalytic centre (CuZ) is a unique tetranuclear copper centre bridged by inorganic sulphur in a tetrahedron arrangement that can have different oxidation states. Previously, Marinobacter hydrocarbonoclasticus N 2 OR was isolated with the CuZ centre as CuZ*, in the [1Cu 2+ : 3Cu + ] redox state, which is redox inert and requires prolonged incubation under reductive conditions to be activated. In this work, we report, for the first time, the isolation of N 2 OR from M. hydrocarbonoclasticus in the ‘purple’ form, in which the CuZ centre is in the oxidized [2Cu 2+ : 2Cu + ] redox state and is redox active. This form of the enzyme was isolated in the presence of oxygen from a microaerobic culture in the presence of nitrate and also from a strictly anaerobic culture. The purple form of the enzyme was biochemically characterized and was shown to be a redox active species, although it is still catalytically non-competent, as its specific activity is lower than that of the activated fully reduced enzyme and comparable with that of the enzyme with the CuZ centre in either the [1Cu 2+ : 3Cu + ] redox state or in the redox inactive CuZ* state.


2012 ◽  
Vol 393 (10) ◽  
pp. 1067-1077 ◽  
Author(s):  
Anja Wüst ◽  
Lisa Schneider ◽  
Anja Pomowski ◽  
Walter G. Zumft ◽  
Peter M.H. Kroneck ◽  
...  

Abstract The tetranuclear CuZ cluster is the unique active site of nitrous oxide reductase, the enzyme that catalyzes the reduction of nitrous oxide to dinitrogen as the final reaction in bacterial denitrification. Three-dimensional structures of orthologs of the enzyme from a variety of different bacterial species were essential steps in the elucidation of the properties of this center. However, while structural data first revealed and later confirmed the presence of four copper ions in spectroscopically distinct forms of CuZ, the exact structure and stoichiometry of the cluster showed significant variations. A ligand bridging ions CuZ1 and CuZ2 was initially assigned as a water or hydroxo species in the structures from Pseudomonas nautica (now Marinobacter hydrocarbonoclasticus) and Paracoccus denitrificans. This ligand was absent in a structure from ‘Achromobacter cycloclastes’, and could be reconstituted by iodide that acted as an inhibitor of catalysis. A recent structure of anoxically isolated nitrous oxide reductase from Pseudomonas stutzeri revealed the bridging ligand to be sulfide, S2-, and showed an unprecedented side-on mode of nitrous oxide binding to this form of CuZ.


1991 ◽  
Vol 43 (2-3) ◽  
pp. 181
Author(s):  
Jacqui A. Farrar ◽  
Andrew J. Thomson ◽  
Myles R. Cheesman ◽  
David M. Dooley ◽  
Walter G. Zumft

Sign in / Sign up

Export Citation Format

Share Document