Virtual screening of potential inhibitors from TCM for the CPSF30 binding site on the NS1A protein of influenza A virus

2014 ◽  
Vol 20 (3) ◽  
Author(s):  
Haixin Ai ◽  
Li Zhang ◽  
Alan K. Chang ◽  
Hongyun Wei ◽  
Yuchen Che ◽  
...  
2014 ◽  
Vol 21 (1) ◽  
pp. 149-156 ◽  
Author(s):  
Haixin Ai ◽  
Fangliang Zheng ◽  
Fangbo Deng ◽  
Chunyu Zhu ◽  
Ying Gu ◽  
...  

2006 ◽  
Vol 80 (8) ◽  
pp. 3957-3965 ◽  
Author(s):  
Karen Y. Twu ◽  
Diana L. Noah ◽  
Ping Rao ◽  
Rei-Lin Kuo ◽  
Robert M. Krug

ABSTRACT The emergence of influenza A viruses resistant to the two existing classes of antiviral drugs highlights the need for additional antiviral drugs, particularly considering the potential threat of a pandemic of H5N1 influenza A viruses. Here, we determine whether influenza A virus replication can be selectively inhibited by blocking the ability of its NS1A protein to inhibit the 3′-end processing of cellular pre-mRNAs, including beta interferon (IFN-β) pre-mRNA. Pre-mRNA processing is inhibited via the binding of the NS1A protein to the cellular CPSF30 protein, and mutational inactivation of this NS1A binding site causes severe attenuation of the virus. We demonstrate that binding of CPSF30 is mediated by two of its zinc fingers, F2F3, and that the CPSF30/F2F3 binding site on the NS1A protein extends from amino acid 144 to amino acid 186. We generated MDCK cells that constitutively express epitope-tagged F2F3 in the nucleus, although at only approximately one-eighth the level of the NS1A protein produced during virus infection. Influenza A virus replication was inhibited in this cell line, whereas no inhibition was observed with influenza B virus, whose NS1B protein lacks a binding site for CPSF30. Influenza A virus, but not influenza B virus, induced increased production of IFN-β mRNA in the F2F3-expressing cells. These results, which indicate that F2F3 inhibits influenza A virus replication by blocking the binding of endogenous CPSF30 to the NS1A protein, point to this NS1A binding site as a potential target for the development of antivirals directed against influenza A virus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-Jen Chang ◽  
Cheng-Yun Yeh ◽  
Ju-Chien Cheng ◽  
Yu-Qi Huang ◽  
Kai-Cheng Hsu ◽  
...  

AbstractEradicating influenza A virus (IAV) is difficult, due to its genetic drift and reassortment ability. As the infectious cycle is initiated by the influenza glycoprotein, hemagglutinin (HA), which mediates the binding of virions to terminal sialic acids moieties, HA is a tempting target of anti-influenza inhibitors. However, the complexity of the HA structure has prevented delineation of the structural characterization of the HA protein–ligand complex. Our computational strategy efficiently analyzed > 200,000 records of compounds held in the United States National Cancer Institute (NCI) database and identified potential HA inhibitors, by modeling the sialic acid (SA) receptor binding site (RBS) for the HA structure. Our modeling revealed that compound NSC85561 showed significant antiviral activity against the IAV H1N1 strain with EC50 values ranging from 2.31 to 2.53 µM and negligible cytotoxicity (CC50 > 700 µM). Using the NSC85561 compound as the template to generate 12 derivatives, robust bioassay results revealed the strongest antiviral efficacies with NSC47715 and NSC7223. Virtual screening clearly identified three SA receptor binding site inhibitors that were successfully validated in experimental data. Thus, our computational strategy has identified SA receptor binding site inhibitors against HA that show IAV-associated antiviral activity.


2015 ◽  
Vol 90 (1) ◽  
pp. 611-615 ◽  
Author(s):  
Ki Joon Cho ◽  
Bert Schepens ◽  
Kristof Moonens ◽  
Lei Deng ◽  
Walter Fiers ◽  
...  

We report the crystal structure of the M2 ectodomain (M2e) in complex with a monoclonal antibody that binds the amino terminus of M2. M2e extends into the antibody binding site to form an N-terminal β-turn near the bottom of the paratope. This M2e folding differs significantly from that of M2e in complex with an antibody that binds another part of M2e. This suggests that M2e can adopt at least two conformations that can elicit protective antibodies.


2010 ◽  
Vol 98 (3) ◽  
pp. 539a
Author(s):  
Chunlong Ma ◽  
Yuki Ohigashi ◽  
Xianghong Jing ◽  
Robert A. Lamb ◽  
Lawrence H. Pinto

Sign in / Sign up

Export Citation Format

Share Document