scholarly journals Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram

2000 ◽  
Vol 6 (05) ◽  
pp. 437-444 ◽  
Author(s):  
Olof C. Hellman ◽  
Justin A. Vandenbroucke ◽  
Järg Rüsing ◽  
Dieter Isheim ◽  
David N. Seidman

Abstract The three-dimensional (3D) atom-probe technique produces a reconstruction of the elemental chemical identities and three-dimensional positions of atoms field evaporated from a sharply pointed metal specimen, with a local radius of curvature of less than 50 nm. The number of atoms collected can be on the order of one million, representing an analysis volume of approximately 20 nm × 20 nm × 200 nm (80,000 nm3). This large amount of data allows for the identification of microstructural features in a sample, such as grain or heterophase boundaries, if the feature density is large enough. Correlation of the measured atomic positions with these identified features results in an atom-by-atom description of the chemical environment of crystallographic defects. This article outlines a data compilation technique for the generation of composition profiles in the vicinity of interfaces in a geometrically independent way. This approach is applied to quantitative determination of interfacial segregation of silver at a MgO/Cu(Ag) heterophase interface.

1999 ◽  
Vol 578 ◽  
Author(s):  
O.C. Hellman ◽  
J.A. Vandenbroucke ◽  
J. Rüsing ◽  
D. Isheim ◽  
D.N. Seidman

AbstractThe Three Dimensional Atom Probe produces a real space map of the elemental identities and positions of atoms field-evaporated from a sharply pointed specimen. The analyzed volume is on the order of 20 nm × 20 nm × 100 nm. This is large enough to enclose microstructural features such as grain- or heterophase boundaries. Correlation of the measured atomic positions with such features results in an atom-by-atom description of the chemical environment of these crystallographic defects. We describe here a method for identifying these interfaces and profiling the composition in the vicinity of the interfaces without any assumptions about the interface geometry. This approach is applied to quantitative determination of interfacial segregation of Ag at a MgO/Cu(Ag) heterophase interface. We discuss the implications of our technique with respect to classical treatments of segregation at interfaces.


2005 ◽  
Vol 38 (3) ◽  
pp. 559-562 ◽  
Author(s):  
Ursula Gibson ◽  
Yi Kou

Crys.m is a MATLAB routine that combines a micrograph of a crystal with a scaleable, rotatable three-dimensional cage structure to determine the orientation of the crystal axes. The example presented here uses the morphology of tetragonal lysozyme. Rotation of the cage until it aligns with the crystal in the image yields the orientation of the c axis of the crystal relative to the image normal. This analysis can be used for quantitative determination of crystal orientation effects induced by electric, magnetic and/or gravitational fields.


2020 ◽  
pp. 39-48
Author(s):  
Т. В. Булгакова ◽  
О. В. Полякова ◽  
С. С. Кисіль ◽  
О. Є. Шмельова

The purpose of the investigation is the development of computer technology of analysis and design of built environment from the point of its visual perception in the space of its three-dimensional model without using the perspective projections. The methodology were used to achieve the purpose: analysis of the scientific publications on the topic of object environment composition; applied geometry methods, method of division of the geometrical object into simplexes (triangulation), methods of advanced algebra and analytical geometry; computer modeling for construction of the model of visual perception of the environment. Methods of analysis of the three-dimensional model on the basis of modeling of visual perception by means of computer technologies directly in the area of the model without using perspective projections are developed. It is offered to analyze the visual perception of any objects and their relations by means of using the solid angles with the vertices placed in the point of view and the surfaces that surround the visible contours of three-dimensional objects. This approach gives the opportunity to analyze the objects simultaneously regardless their position according to the observer; apart of that, the objects, which are accepted similarly in the reality, will have the same geometrical features during the modeling of visual perception and beside that, the refusal of using of the perspective projections will make possible to avoid the distortion of the images. The algorithm of determination of the solid angles to three-dimensional objects, which is the basis of computer methods of compositional analysis of the object environment from the position of visual perception without the use of perspective projections, is developed. The geometrical model of visual perception by a human being from the certain point of perception is built. It makes possible to define correctly visual features of the object environment and gives the opportunity to analyze the whole surrounding of the observer in the area of 360 degrees. Scientific novelty of the investigation means that the methods of analysis of the three-dimensional model on the basis of modeling of visual perception by means of computer technologies directly in the area of the model without using perspective projections are developed for the first time. The concept of the geometrical model of visual perception by a human being from the certain point of perception is developed. The further development of the methodology of quantitative determination of characteristics of object environment by means of computer technologies is defined. Practical significance shows that the results of the scientific investigation can be used for analysis and judgments of the aesthetic peculiarities of the object environment by means of computer technologies with quantitative determination of characteristics of object environment from the point of its visual perception. Such approach gives the opportunity to develop and create the further certain recommendations and instructions for correction of the existing environment and for the development of the new one.


The Analyst ◽  
2020 ◽  
Vol 145 (12) ◽  
pp. 4156-4163
Author(s):  
Lixia Yang ◽  
Linfeng He ◽  
Danqi Huang ◽  
Yaoqi Wang ◽  
Quanwei Song ◽  
...  

For the first time, neutron tomography was applied for 3D quantitative hydrogen distribution analysis in titanium alloys following thermohydrogen processing.


2018 ◽  
Vol 13 ◽  
pp. 58-67 ◽  
Author(s):  
Ling Li ◽  
Jing Long ◽  
Long Li ◽  
Huijuan Cao ◽  
Tingting Tang ◽  
...  

AIAA Journal ◽  
1975 ◽  
Vol 13 (7) ◽  
pp. 841-842 ◽  
Author(s):  
Tse-Fou Zien ◽  
William C. Ragsdale ◽  
W. Charles Spring

2012 ◽  
Vol 18 (2) ◽  
pp. 359-364 ◽  
Author(s):  
Peter J. Felfer ◽  
Baptiste Gault ◽  
Gang Sha ◽  
Leigh Stephenson ◽  
Simon P. Ringer ◽  
...  

AbstractAtom probe tomography (APT) provides three-dimensional analytical imaging of materials with near-atomic resolution using pulsed field evaporation. The processes of field evaporation can cause atoms to be placed at positions in the APT reconstruction that can deviate slightly from their original site in the material. Here, we describe and model one such process—that of preferential retention of solute atoms in multicomponent systems. Based on relative field evaporation probabilities, we calculate the point spread function for the solute atom distribution in the “z,” or in-depth direction, and use this to extract more accurate solute concentration profiles.


1991 ◽  
Vol 65 (6) ◽  
pp. 433-440 ◽  
Author(s):  
L. Beghi ◽  
E. Xausa ◽  
C. De Biasio ◽  
M. Zanforlin

2014 ◽  
Vol 794-796 ◽  
pp. 455-460
Author(s):  
Bradley Diak ◽  
Rathna Lanerolle

The age hardening response of a quasi-binary Al-Mg2Si alloy was studied using activation distance analysis of precise strain rate sensitivity experiments at 78 and 300K. The alloy of Al-0.7Mg-0.33Si-0.024Fe-0.006Ti(at.%) has a stochiometrically balanced composition of Mg2Si. The alloy was solutionized at 550°C and ice water quenched before ageing in one of two ways: single-step or multi-step ageing. For single-step ageing: specimens were naturally aged for 70 days at room temperature (RT); pre-aged for 16 hours at 70°C; or artificially aged for 30 min or 10 hours at 175°C. For multi-step ageing: specimens were pre-aged at 70°C for 16 hours after natural ageing for 70 days at RT; artificially aged for 30 min or 10 hours at 175°C after pre-aging at 70°C for 16 hours; or artificially aged for 10 hours at 175°C after natural aging for 70 days at RT. The activation analysis reveals rate controlling obstacle dimensions ranging from 0.3 to 10 nm depending upon the ageing condition. A comparison is made to a prior three dimensional atom probe ageing study of the same alloy [Murayama and Hono, Acta Mater., 47 (1999) 1537-1578.].


Sign in / Sign up

Export Citation Format

Share Document