scholarly journals Method for holistic wind turbine drivetrain comparison exemplarily applied to geared and direct drive systems

Author(s):  
Freia Harzendorf ◽  
Ralf Schelenz ◽  
Georg Jacobs

AbstractThe drivetrain as an important part of wind turbines needs to be improved in order to deal with today’s high development and cost pressure. One important step towards enhanced drivetrains is to identify the most suitable concept for a targeted onshore application in an early design stage. With this purpose, a holistic lifecycle system evaluation approach relying on minimum input information is presented. In order to identify a dominant solution, an additive target system is defined taking cost, ecological sustainability, and supplied energy into account. This multi-criteria decision is aggregated by defining a macrosocial evaluation criterion: “drivetrain specific energy supply effort”. A physics- and empirically-based model is developed to quantify the targets for different onshore drivetrain concepts. The validity of the model results is shown by a comparison to meta-analysis findings. Being utilized on a drivetrain concept comparison between geared and direct drive the approach’s value is showcased. Both concepts score on a comparable level slightly differing in weak and strong wind regimes. An exemplary trade-off between investment- and operational effort shows, that for both concepts the investment effort is higher than the operational. The comparison furthermore shows how robust decision support can be provided by parameter variation and finally it stresses, that the decision maker’s preferences need to be incorporated in the decision. Concluding, this analysis shows that physics- and empirically-based model approaches enable holistic wind turbine drivetrain concept comparisons in an early design stage.

Author(s):  
Lukman Irshad ◽  
Salman Ahmed ◽  
Onan Demirel ◽  
Irem Y. Tumer

Detection of potential failures and human error and their propagation over time at an early design stage will help prevent system failures and adverse accidents. Hence, there is a need for a failure analysis technique that will assess potential functional/component failures, human errors, and how they propagate to affect the system overall. Prior work has introduced FFIP (Functional Failure Identification and Propagation), which considers both human error and mechanical failures and their propagation at a system level at early design stages. However, it fails to consider the specific human actions (expected or unexpected) that contributed towards the human error. In this paper, we propose a method to expand FFIP to include human action/error propagation during failure analysis so a designer can address the human errors using human factors engineering principals at early design stages. To explore the capabilities of the proposed method, it is applied to a hold-up tank example and the results are coupled with Digital Human Modeling to demonstrate how designers can use these tools to make better design decisions before any design commitments are made.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Wenting Liu ◽  
Qingliang Zeng ◽  
Lirong Wan ◽  
Chenglong Wang

It is important to allocate a reliability goal for the hydraulic excavator in the early design stage of the new system. There are some effective methods for setting reliability target and allocating its constituent subsystems in the field of aerospace, electric, vehicles, railways, or chemical system, but until now there is no effective method for the hydraulic excavator or engineering machinery. In this paper, an approach is proposed which combines with the conventional reliability allocation methods for setting reliability goals and allocating the subsystem and parts useful in the early design stage of the hydraulic excavator newly developed. It includes Weibull analysis method, modified Aeronautical Radio Inc. (ARINC) method, and modified systematic failure mode and effect analysis (FMEA) method. After completing reliability allocation, it is necessary to organize the designers and experts to evaluate the rationality of the reliability target through FEMA analysis considering feasibility of the improvement technically for the part which was new developed or had fault in its predecessor. The proposed approach provides an easy methodology for allocate a practical reliability goal for the hydraulic excavator capturing the real life behavior of the product. It proposes a simple and unique way to capture the improvement of the subsystems or components of the hydraulic excavator. The proposed approach could be extended to consider other construction machinery equipment and have practicality value to research excellent mechanical product.


Sign in / Sign up

Export Citation Format

Share Document