energy modelling
Recently Published Documents


TOTAL DOCUMENTS

357
(FIVE YEARS 144)

H-INDEX

27
(FIVE YEARS 7)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 473
Author(s):  
Marcin Zygmunt ◽  
Dariusz Gawin

The protection of the natural environment and countering global warming are crucial worldwide issues. The residential sector has a significant impact on overall energy consumption and associated greenhouse gas emissions. Therefore, it is extremely important to focus on all of the activities that can result in more energy efficient and sustainable city scale areas, preventing global warming. The highest improvement in the energy efficiency of existing buildings is possible by combining their deep refurbishment and the use of renewable energy sources (RES), where solar energy appears to be the best for application in buildings. Modernizations that provide full electrification seem to be a trend towards providing modern, energy efficient and environmentally friendly, smart buildings. Moreover, switching from an analysis at the single building level to the district scale allows us to develop more sustainable neighborhoods, following the urban energy modelling (UEM) paradigm. Then, it is possible to use the energy cluster (EC) concept, focusing on energy-, environmental- and economic-related aspects of an examined region. In this paper, an actual Polish suburban district is examined using the home-developed TEAC software. The software is briefly described and compared with other computer codes applied for UEM. In this study, the examined suburban area is modernized, assuming buildings’ deep retrofitting, the application of RES and energy storage systems, as well as usage of smart metering techniques. The proposed modernizations assumed full electrification of the cluster. Moreover, the examined scenarios show potential electricity savings up to approximately 60%, as well as GHG emission reduction by 90% on average. It is demonstrated that the proposed approach is a valid method to estimate various energy- and environment-related issues of modernization for actual residential clusters.


Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 121973
Author(s):  
Hauke T.J. Henke ◽  
Francesco Gardumi ◽  
Mark Howells

2021 ◽  
Vol 1 ◽  
pp. 29
Author(s):  
Sebastian Sterl ◽  
Albertine Devillers ◽  
Celray James Chawanda ◽  
Ann van Griensven ◽  
Wim Thiery ◽  
...  

The modelling of electricity systems with substantial shares of renewable resources, such as solar power, wind power and hydropower, requires datasets on renewable resource profiles with high spatiotemporal resolution to be made available to the energy modelling community. Whereas such resources exist for solar power and wind power profiles on diurnal and seasonal scales across all continents, this is not yet the case for hydropower. Here, we present a newly developed open-access African hydropower atlas, containing seasonal hydropower generation profiles for nearly all existing and several hundred future hydropower plants on the African continent. The atlas builds on continental-scale hydrological modelling in combination with detailed technical databases of hydropower plant characteristics and can facilitate modelling of power systems across Africa.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8285
Author(s):  
Marcin Zygmunt ◽  
Dariusz Gawin

The development of energy-efficient buildings and sustainable energy supply systems is an obligatory undertaking towards a more sustainable future. To protect the natural environment, the modernization of urban infrastructure is indisputably important, possible to achieve considering numerous buildings as a group, i.e., Building Energy Cluster (BEC). The urban planning process evaluates multiple complex criteria to select the most profitable scenario in terms of energy consumption, environmental protection, or financial profitability. Thus, Urban Building Energy Modelling (UBEM) is presently a popular approach applied for studies towards the development of sustainable cities. Today’s UBEM tools use various calculation methods and approaches, as well as include different assumptions and limitations. While there are several popular and valuable software for UBEM, there is still no such tool for analyses of the Polish residential stock. In this work an overview on the home-developed tool called TEAC, focusing on its’ mathematical model and use of Artificial Neural Networks (ANN). An exemplary application of the TEAC software is also presented.


2021 ◽  
Author(s):  
◽  
Wendy Sunarya

<p>Site is an important factor in the building design process, where it is analysed to determine design strategies for responding the microclimate. It is also considered important in Building Energy Simulations (BES) where a weather file is used to represent the site location and its microclimate. However, many cases of BES in the design process use weather file from a nearby weather station rather than site specific microclimate. In fact, site microclimate can be affected by nearby parameters such as ground surface and vegetation, with unknown effects. In the Wellington, New Zealand context, micro-climates vary widely due to the local topography while suburban houses can be located on the side or bottom of a hill. These houses are likely to have different exposure to the sun and wind which can influence energy consumption for space heating.  Many studies about site-parameters impacts mainly focus on the vegetation and nearby buildings effect on microclimate. Only a few estimated the impact of site-parameters on building energy use and mostly their cases are in urban areas (flat terrain). Unfortunately, site parameters, such as altitude and slope, associated with the Wellington topography (hilly terrain) have never been examined. This thesis investigates the importance of site parameters on house heating energy modelling for the Wellington context. BES software, EnergyPlus, was used and explored to identify limitations in modelling site parameters. An attempt was made to solve these limitations through the integration with microclimate software. Three microclimate software programmes were reviewed: ENVI-met, UWG (Urban Weather Generator) and CFD (Computational Fluid Dynamic) software.  ENVI-met was selected to generate the local air temperature and relative humidity affected by site parameters, which was used for EnergyPlus weather-file modification. A parametric study of ENVI-met basic input with model evaluation was also conducted. The results of parametric test integrating ENVI-met with EnergyPlus showed that ENVI-met mostly produce insignificant impacts of site parameters on house heating energy, unlike the results found in the literature review. This is likely due to the cool weather conditions (winter in Wellington) used in simulation, which suggests that the idea of microclimate modelling using ENVI-met is not applicable for house heating energy modelling in the temperate, Wellington context.</p>


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8250
Author(s):  
Avichal Malhotra ◽  
Simon Raming ◽  
Jérôme Frisch ◽  
Christoph van Treeck

Urban Building Energy Modelling (UBEM) requires adequate geometrical information to represent buildings in a 3D digital form. However, open data models usually lack essential information, such as building geometries, due to a lower granularity in available data. For heating demand simulations, this scarcity impacts the energy predictions and, thereby, questioning existing simulation workflows. In this paper, the authors present an open-source CityGML LoD Transformation (CityLDT) tool for upscaling or downscaling geometries of 3D spatial CityGML building models. With the current support of LoD0–2, this paper presents the adapted methodology and developed algorithms for transformations. Using the presented tool, the authors transform open CityGML datasets and conduct heating demand simulations in Modelica to validate the geometric processing of transformed building models.


2021 ◽  
Author(s):  
◽  
Wendy Sunarya

<p>Site is an important factor in the building design process, where it is analysed to determine design strategies for responding the microclimate. It is also considered important in Building Energy Simulations (BES) where a weather file is used to represent the site location and its microclimate. However, many cases of BES in the design process use weather file from a nearby weather station rather than site specific microclimate. In fact, site microclimate can be affected by nearby parameters such as ground surface and vegetation, with unknown effects. In the Wellington, New Zealand context, micro-climates vary widely due to the local topography while suburban houses can be located on the side or bottom of a hill. These houses are likely to have different exposure to the sun and wind which can influence energy consumption for space heating.  Many studies about site-parameters impacts mainly focus on the vegetation and nearby buildings effect on microclimate. Only a few estimated the impact of site-parameters on building energy use and mostly their cases are in urban areas (flat terrain). Unfortunately, site parameters, such as altitude and slope, associated with the Wellington topography (hilly terrain) have never been examined. This thesis investigates the importance of site parameters on house heating energy modelling for the Wellington context. BES software, EnergyPlus, was used and explored to identify limitations in modelling site parameters. An attempt was made to solve these limitations through the integration with microclimate software. Three microclimate software programmes were reviewed: ENVI-met, UWG (Urban Weather Generator) and CFD (Computational Fluid Dynamic) software.  ENVI-met was selected to generate the local air temperature and relative humidity affected by site parameters, which was used for EnergyPlus weather-file modification. A parametric study of ENVI-met basic input with model evaluation was also conducted. The results of parametric test integrating ENVI-met with EnergyPlus showed that ENVI-met mostly produce insignificant impacts of site parameters on house heating energy, unlike the results found in the literature review. This is likely due to the cool weather conditions (winter in Wellington) used in simulation, which suggests that the idea of microclimate modelling using ENVI-met is not applicable for house heating energy modelling in the temperate, Wellington context.</p>


Sign in / Sign up

Export Citation Format

Share Document