Analytical Solutions for Nonlinear Systems of Conformable Space-Time Fractional Partial Differential Equations via Generalized Fractional Differential Transform

2019 ◽  
Vol 47 (2) ◽  
pp. 487-507
Author(s):  
Hayman Thabet ◽  
Subhash Kendre ◽  
James Peters
2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Ji Juan-Juan ◽  
Guo Ye-Cai ◽  
Zhang Lan-Fang ◽  
Zhang Chao-Long

A table lookup method for solving nonlinear fractional partial differential equations (fPDEs) is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1)-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.


2018 ◽  
Vol 21 (2) ◽  
pp. 312-335 ◽  
Author(s):  
Xiao-Li Ding ◽  
Juan J. Nieto

AbstractIn this paper, we consider the analytical solutions of multi-term time-space fractional partial differential equations with nonlocal damping terms for general mixed Robin boundary conditions on a finite domain. Firstly, method of reduction to integral equations is used to obtain the analytical solutions of multi-term time fractional differential equations with integral terms. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the multi-term time-space fractional partial differential equations with nonlocal damping terms to the multi-term time fractional differential equations with integral terms. By applying the obtained analytical solutions to the resulting multi-term time fractional differential equations with integral terms, the desired analytical solutions of the multi-term time-space fractional partial differential equations with nonlocal damping terms are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Mehmet Ali Akinlar ◽  
Muhammet Kurulay

A new solution technique for analytical solutions of fractional partial differential equations (FPDEs) is presented. The solutions are expressed as a finite sum of a vector type functional. By employing MAPLE software, it is shown that the solutions might be extended to an arbitrary degree which makes the present method not only different from the others in the literature but also quite efficient. The method is applied to special Bagley-Torvik and Diethelm fractional differential equations as well as a more general fractional differential equation.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012031
Author(s):  
E.A. Abdel-Rehim

Abstract The fractional calculus gains wide applications nowadays in all fields. The implementation of the fractional differential operators on the partial differential equations make it more reality. The space-time-fractional differential equations mathematically model physical, biological, medical, etc., and their solutions explain the real life problems more than the classical partial differential equations. Some new published papers on this field made many treatments and approximations to the fractional differential operators making them loose their physical and mathematical meanings. In this paper, I answer the question: why do we need the fractional operators?. I give brief notes on some important fractional differential operators and their Grünwald-Letnikov schemes. I implement the Caputo time fractional operator and the Riesz-Feller operator on some physical and stochastic problems. I give some numerical results to some physical models to show the efficiency of the Grünwald-Letnikov scheme and its shifted formulae. MSC 2010: Primary 26A33, Secondary 45K05, 60J60, 44A10, 42A38, 60G50, 65N06, 47G30,80-99


2011 ◽  
Vol 347-353 ◽  
pp. 463-466
Author(s):  
Xue Hui Chen ◽  
Liang Wei ◽  
Lian Cun Zheng ◽  
Xin Xin Zhang

The generalized differential transform method is implemented for solving time-fractional partial differential equations in fluid mechanics. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor’s formula. Results obtained by using the scheme presented here agree well with the numerical results presented elsewhere. The results reveal the method is feasible and convenient for handling approximate solutions of time-fractional partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document