Localized Administration of Doxycycline Suppresses Aortic Dilatation in an Experimental Mouse Model of Abdominal Aortic Aneurysm

2006 ◽  
Vol 20 (2) ◽  
pp. 228-236 ◽  
Author(s):  
Michel A. Bartoli ◽  
Federico E. Parodi ◽  
Jack Chu ◽  
Monica B. Pagano ◽  
Dongli Mao ◽  
...  
2016 ◽  
Vol 22 (S3) ◽  
pp. 1196-1197 ◽  
Author(s):  
Jeffrey R Tonniges ◽  
Ben Albert ◽  
Edward Calomeni ◽  
Chetan Hans ◽  
Gunjan Agarwal

2019 ◽  
Vol 287 ◽  
pp. e160-e161
Author(s):  
M. Kabardieva ◽  
A. Komlev ◽  
I. Kuchin ◽  
A. Kolegaev ◽  
P. Lepilin ◽  
...  

2020 ◽  
Vol 52 (9) ◽  
pp. 1587-1601
Author(s):  
Se-Jin Jeong ◽  
Min Ji Cho ◽  
Na Young Ko ◽  
Sinai Kim ◽  
In-Hyuk Jung ◽  
...  

Abstract Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease characterized by structural deterioration of the aorta caused by inflammation and oxidative stress, leading to aortic dilatation and rupture. Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, has been reported as a potential negative regulator of inflammatory vascular diseases, and it has been identified as a protein that is increased in patients with ruptured AAA compared to patients with nonruptured AAA. In this study, we demonstrated that PRDX2 was a pivotal factor involved in the inhibition of AAA progression. PRDX2 levels were increased in AAA compared with those in normal aortas in both humans and mice. Ultrasound imaging revealed that the loss of PRDX2 accelerated the development of AAA in the early stages and increased AAA incidence in mice infused with angiotensin II (Ang II). Prdx2−/− mice infused with Ang II exhibited increased aortic dilatation and maximal aortic diameter without a change in blood pressure. Structural deterioration of the aortas from Prdx2−/− mice infused with Ang II was associated with increases in the degradation of elastin, oxidative stress, and intramural thrombi caused by microhemorrhages, immature neovessels, and the activation of matrix metalloproteinases compared to that observed in controls. Moreover, an increase in inflammatory responses, including the production of cell adhesion molecules and the accumulation of inflammatory cells and proinflammatory cytokines due to PRDX2 deficiency, accelerated Ang II-induced AAA progression. Our data confirm that PRDX2 plays a role as a negative regulator of the pathological process of AAA and suggest that increasing PRDX2 activity may be a novel strategy for the prevention and treatment of AAA.


2011 ◽  
Vol 43 (17) ◽  
pp. 993-1003 ◽  
Author(s):  
Joshua M. Spin ◽  
Mark Hsu ◽  
Junya Azuma ◽  
Maureen M. Tedesco ◽  
Alicia Deng ◽  
...  

We sought to characterize temporal gene expression changes in the murine angiotensin II (ANG II)-ApoE−/− model of abdominal aortic aneurysm (AAA). Aortic ultrasound measurements were obtained over the 28-day time-course. Harvested suprarenal aortic segments were evaluated with whole genome expression profiling at 7, 14, and 28 days using the Agilent Whole Mouse Genome microarray platform and Statistical Analysis of Microarrays at a false discovery rate of <1%. A group of angiotensin-treated mice experienced contained rupture (CR) within 7 days and were analyzed separately. Progressive aortic dilatation occurred throughout the treatment period. However, the numerous early expression differences between ANG II-treated and control were not sustained over time. Ontologic analysis revealed widespread upregulation of inflammatory, immune, and matrix remodeling genes with ANG II treatment, among other pathways such as apoptosis, cell cycling, angiogenesis, and p53 signaling. CR aneurysms displayed significant decreases in TGF-β/BMP-pathway signaling, MAPK signaling, and ErbB signaling genes vs. non-CR/ANG II-treated samples. We also performed literature-based network analysis, extracting numerous highly interconnected genes associated with aneurysm development such as Spp1, Myd88, Adam17 and Lox. 1) ANG II treatment induces extensive early differential expression changes involving abundant signaling pathways in the suprarenal abdominal aorta, particularly wide-ranging increases in inflammatory genes with aneurysm development. 2) These gene expression changes appear to dissipate with time despite continued growth, suggesting that early changes in gene expression influence disease progression in this AAA model, and that the aortic tissue adapts to prolonged ANG II infusion. 3) Network analysis identified nexus genes that may constitute aneurysm biomarkers or therapeutic targets.


2017 ◽  
Vol 37 (11) ◽  
pp. 1990-1993 ◽  
Author(s):  
Stoyan N. Angelov ◽  
Jay Zhu ◽  
David A. Dichek

Theranostics ◽  
2019 ◽  
Vol 9 (14) ◽  
pp. 4156-4167 ◽  
Author(s):  
Xiaoying Wang ◽  
Brooks A Lane ◽  
John F Eberth ◽  
Susan M. Lessner ◽  
Naren R. Vyavahare

2016 ◽  
Vol 36 (5) ◽  
pp. 886-897 ◽  
Author(s):  
Daiko Wakita ◽  
Yosuke Kurashima ◽  
Timothy R. Crother ◽  
Magali Noval Rivas ◽  
Youngho Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document