The Contribution of Litterfall to Net Primary Production During Secondary Succession in the Boreal Forest

Ecosystems ◽  
2016 ◽  
Vol 20 (4) ◽  
pp. 830-844 ◽  
Author(s):  
Han Y. H. Chen ◽  
Amber N. Brant ◽  
Meelis Seedre ◽  
Brian W. Brassard ◽  
Anthony R. Taylor
2001 ◽  
Vol 11 (5) ◽  
pp. 1395-1411 ◽  
Author(s):  
S. T. Gower ◽  
O. Krankina ◽  
R. J. Olson ◽  
M. Apps ◽  
S. Linder ◽  
...  

1998 ◽  
Vol 28 (3) ◽  
pp. 375-389 ◽  
Author(s):  
Scott J Goetz ◽  
Stephen D Prince

Variability in carbon exchange, net primary production (NPP), and light-use efficiency were explored for 63 boreal forest stands in northeastern Minnesota using an ecophysiological model. The model was initialized with extensive field measurements of Populus tremuloides Michx. and Picea mariana (Mill.) BSP stand properties. The results showed that the proportion of total carbon assimilation expended in autotrophic respiration (i.e., the respiration to assimilation ratio, R/A) was significantly different for the two tree species and this explained much of the variability in the amount of net production per unit absorbed photosynthetically active radiation (APAR), referred to as PAR utilization ( epsilonn). This is the first known study to directly link variability in respiratory costs to epsilonn. Total assimilation per unit APAR ( epsilong) was much less variable than epsilonn and was not significantly different between species. Greater stomatal control on some moisture stressed sites accounted for most of the variability in epsilong. The lack of a simple relationship between light harvesting and net carbon gain indicates that estimation of net primary production with satellite remote sensing requires additional information on respiration costs; however, evidence for convergence in epsilong can be used to simplify the remote sensing of gross primary production over large areas.


Sign in / Sign up

Export Citation Format

Share Document