Analysis of the stress distribution in a laminar direct simple shear device and implications for test data interpretation

2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Michelle L. Bernhardt-Barry ◽  
Giovanna Biscontin ◽  
Catherine O’Sullivan
2020 ◽  
Vol 44 (5) ◽  
pp. 20190471
Author(s):  
M. Konstadinou ◽  
A. Bezuijen ◽  
G. Greeuw ◽  
C. Zwanenburg ◽  
H. M. Van Essen ◽  
...  

2021 ◽  
Vol 45 (2) ◽  
pp. 20210125
Author(s):  
Jiarui Chen ◽  
Scott M. Olson ◽  
Soham Banerjee ◽  
Mandar M. Dewoolkar ◽  
Yves Dubief

Author(s):  
Heather J. Miller ◽  
Pedro de Alba ◽  
Kenneth C. Baldwin

A testing system has been developed to study the behavior of saturated sand under low-level cyclic shearing strains. The system has been used to determine threshold shear strain levels for fabric destruction in sand aged for different time periods. The system includes a special soil chamber and a direct simple shear (DSS) machine. To impose very small shearing strains, the DSS machine was designed to apply and measure horizontal deformations as small as 0.0005 mm (2 × 10−5 inches). Data obtained to date support the results of previous investigators who performed triaxial tests on freshly deposited samples, indicating a threshold cyclic shear strain level of approximately 0.01 percent. At strains in excess of those levels, destruction of the sand fabric occurred, as evidenced by a reduction in shear modulus at low strain levels. Subsequent modest increases in shear modulus were observed after the specimens were allowed to recover for 24 hours and then tested again. During the recovery period, drainage valves were left open to allow for dissipation of excess pore pressures and for potential consolidation during the short aging period. The DSS system was found to work well for low strain measurements. Furthermore, since shear strains are measured directly under DSS conditions (as opposed to triaxial conditions), the DSS system shows much promise as a device for studying parameters that may influence threshold shear strain levels and fabric evolution and destruction in sands.


2008 ◽  
Vol 45 (4) ◽  
pp. 574-587 ◽  
Author(s):  
Scott M. Olson ◽  
Benjamin B. Mattson

A database of 386 laboratory triaxial compression, direct simple shear, rotational shear, and triaxial extension test results was collected to examine yield and liquefied strength ratio concepts used in liquefaction analysis of sloping ground. These data envelope the yield and liquefied strength ratios obtained from back-analyses of liquefaction flow failure case histories. Generally, triaxial compression exhibits the highest yield and liquefied strength ratios, triaxial extension yields the lowest ratios, and direct simple shear – rotational shear shows intermediate responses. However, mode of shear appears to have a considerably smaller effect on laboratory-measured liquefied strength ratios for specimens with a positive state parameter (i.e., difference in consolidation void ratio and steady state void ratio at the same effective stress).


Sign in / Sign up

Export Citation Format

Share Document