simple shear test
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Azizul Moqsud

Landslide and other geo-disasters are causing a great damage to people and the resources all over the world. An environment friendly countermeasure of landslide disasters is necessary. Microbially induced calcite precipitation (MICP) is a bio-cementation process that can improve the geotechnical properties of granular soils through the precipitation of calcium carbonate (calcite) at soil particle contacts. This MICP can be an environment friendly solution for the biocementation of soil. In this study, an evaluation of biocemented soil has been carried out through direct shear test and direct simple shear test. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) and X-ray Computed Tomography (X-ray CT) tests were conducted to analysis the calcite precipitation inside the biotreated soil by bacteria by using Toyoura sand and silica sand no. 4. It was observed that the amount of calcite generated in silica sand was larger than Toyoura sand. The particle shape influences the result of calcite precipitation and consequent strength of the bio-cemented sand. The amount of strength which was obtained by direct shear test and direct simple shear test indicated the granular soil became bio-stabilized within 7 days of application of nutrients from the surface. However, the amount of generated calcite was not uniformed in different layers while applying the nutrients and bacterial from the surface which was revealed by X-ray CT scan test.


2021 ◽  
Vol 1157 (1) ◽  
pp. 012066
Author(s):  
A Narayanan ◽  
A Abedini ◽  
A Weinschenk ◽  
M J Worswick ◽  
C Butcher

2021 ◽  
Author(s):  
Majd Ahmad ◽  
Richard Ray

AbstractThis paper studies the two widely used material models for predicting the dynamic behavior of soils, the Ramberg-Osgood and Hadrin-Drnevich models. Resonant column and torsional simple shear test results on dry sand were used to calibrate and evaluate the model built in the finite element software Midas GTS NX. Both material models are already implemented by the software. This study estimates the ability and efficiency of both soil models coupled with the Masing criteria to predict the behavior of soil when subjected to irregular loading patterns, (e.g., earthquakes), and measure the two most important dynamic properties, the dynamic shear modulus, and the damping ratio.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yao Li ◽  
Peifeng Su ◽  
Zhe Wang

In this study, a 3D simple shear model using DEM is built based on the boundary condition of an NGI-type bidirectional simple shear apparatus. Stack of rings used as lateral constraints in a bidirectional simple shear test is modelled by layers of clumps which is possible to be moved by particles; different contact types and parameters are used to model the sand-loading caps, sand-latex membrane, and sand-sand contacts. A simple shear test using the bidirectional simple shear apparatus is performed for the calibration of the 3D DEM simple shear model. By analyzing the simulation results, the following can be concluded. (1) Rings generated by clumps can provide an accurate boundary condition, effective in computation since no contact force is needed for a clump. (2) In the simulation, the orientation of average contact force changed dramatically during shear. It is in the vertical direction (90°) before shear and changes to 45° at 40% shear strain. No shear band is observed which is consistent with the test, and particles move uniformly. (3) In the simulation, the degree of noncoaxiality is the greatest at the beginning of shear, and it is decreased during shear. However, the degree of noncoaxiality is still large at 20% shear strain where there is a 10° difference between the rotation angle of principal stress and principal strain increment.


2020 ◽  
Vol 8 (12) ◽  
pp. 485-488
Author(s):  
Mingjing Jiang ◽  
Zhenyi Shen ◽  
Ruohan Sun

Sign in / Sign up

Export Citation Format

Share Document