Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models

2014 ◽  
Vol 23 (1) ◽  
pp. 121-141 ◽  
Author(s):  
Bahaa Khalil ◽  
Stefan Broda ◽  
Jan Adamowski ◽  
Bogdan Ozga-Zielinski ◽  
Amanda Donohoe
2005 ◽  
Vol 11 (3) ◽  
pp. 301-328 ◽  
Author(s):  
Sen Cheong Kon ◽  
Lindsay W. Turner

In times of tourism uncertainty, practitioners need short-term forecasting methods. This study compares the forecasting accuracy of the basic structural method (BSM) and the neural network method to find the best structure for neural network models. Data for arrivals to Singapore are used to test the analysis while the naïve and Holt-Winters methods are used for base comparison of simpler models. The results confirm that the BSM remains a highly accurate method and that correctly structured neural models can outperform BSM and the simpler methods in the short term, and can also use short data series. These findings make neural methods significant candidates for future research.


2012 ◽  
Vol 39 (18) ◽  
pp. 37-45 ◽  
Author(s):  
Basawaraj Gadgay ◽  
Subhash Kulkarni ◽  
Chandrasekhar B

10.14311/1121 ◽  
2009 ◽  
Vol 49 (2) ◽  
Author(s):  
M. Chvalina

This article analyses the existing possibilities for using Standard Statistical Methods and Artificial Intelligence Methods for a short-term forecast and simulation of demand in the field of telecommunications. The most widespread methods are based on Time Series Analysis. Nowadays, approaches based on Artificial Intelligence Methods, including Neural Networks, are booming. Separate approaches will be used in the study of Demand Modelling in Telecommunications, and the results of these models will be compared with actual guaranteed values. Then we will examine the quality of Neural Network models. 


Healthcare ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 181 ◽  
Author(s):  
Patricia Melin ◽  
Julio Cesar Monica ◽  
Daniela Sanchez ◽  
Oscar Castillo

In this paper, a multiple ensemble neural network model with fuzzy response aggregation for the COVID-19 time series is presented. Ensemble neural networks are composed of a set of modules, which are used to produce several predictions under different conditions. The modules are simple neural networks. Fuzzy logic is then used to aggregate the responses of several predictor modules, in this way, improving the final prediction by combining the outputs of the modules in an intelligent way. Fuzzy logic handles the uncertainty in the process of making a final decision about the prediction. The complete model was tested for the case of predicting the COVID-19 time series in Mexico, at the level of the states and the whole country. The simulation results of the multiple ensemble neural network models with fuzzy response integration show very good predicted values in the validation data set. In fact, the prediction errors of the multiple ensemble neural networks are significantly lower than using traditional monolithic neural networks, in this way showing the advantages of the proposed approach.


Author(s):  
Makhamisa Senekane ◽  
Mhlambululi Mafu ◽  
Molibeli Benedict Taele

Weather variations play a significant role in peoples’ short-term, medium-term or long-term planning. Therefore, understanding of weather patterns has become very important in decision making. Short-term weather forecasting (nowcasting) involves the prediction of weather over a short period of time; typically few hours. Different techniques have been proposed for short-term weather forecasting. Traditional techniques used for nowcasting are highly parametric, and hence complex. Recently, there has been a shift towards the use of artificial intelligence techniques for weather nowcasting. These include the use of machine learning techniques such as artificial neural networks. In this chapter, we report the use of deep learning techniques for weather nowcasting. Deep learning techniques were tested on meteorological data. Three deep learning techniques, namely multilayer perceptron, Elman recurrent neural networks and Jordan recurrent neural networks, were used in this work. Multilayer perceptron models achieved 91 and 75% accuracies for sunshine forecasting and precipitation forecasting respectively, Elman recurrent neural network models achieved accuracies of 96 and 97% for sunshine and precipitation forecasting respectively, while Jordan recurrent neural network models achieved accuracies of 97 and 97% for sunshine and precipitation nowcasting respectively. The results obtained underline the utility of using deep learning for weather nowcasting.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tichaona W. Mapuwei ◽  
Oliver Bodhlyera ◽  
Henry Mwambi

This study examined the applicability of artificial neural network models in modelling univariate time series ambulance demand for short-term forecasting horizons in Zimbabwe. Bulawayo City Councils’ ambulance services department was used as a case study. Two models, feed-forward neural network (FFNN) and seasonal autoregressive integrated moving average, (SARIMA) were developed using monthly historical data from 2010 to 2017 and compared against observed data for 2018. The mean absolute error (MAE), root mean square error (RMSE), and paired sample t-test were used as performance measures. Calculated performance measures for FFNN were MAE (94.0), RMSE (137.19), and the test statistic value p=0.493(>0.05) whilst corresponding values for SARIMA were 105.71, 125.28, and p=0.005(<0.05), respectively. Findings of this study suggest that the FFNN model is inclined to value estimation whilst the SARIMA model is directional with a linear pattern over time. Based on the performance measures, the parsimonious FFNN model was selected to predict short-term annual ambulance demand. Demand forecasts with FFNN for 2019 reflected the expected general trends in Bulawayo. The forecasts indicate high demand during the months of January, March, September, and December. Key ambulance logistic activities such as vehicle servicing, replenishment of essential equipment and drugs, staff training, leave days scheduling, and mock drills need to be planned for April, June, and July when low demand is anticipated. This deliberate planning strategy would avoid a dire situation whereby ambulances are available but without adequate staff, essential drugs, and equipment to respond to public emergency calls.


Sign in / Sign up

Export Citation Format

Share Document