scholarly journals Univariate Time Series Analysis of Short-Term Forecasting Horizons Using Artificial Neural Networks: The Case of Public Ambulance Emergency Preparedness

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tichaona W. Mapuwei ◽  
Oliver Bodhlyera ◽  
Henry Mwambi

This study examined the applicability of artificial neural network models in modelling univariate time series ambulance demand for short-term forecasting horizons in Zimbabwe. Bulawayo City Councils’ ambulance services department was used as a case study. Two models, feed-forward neural network (FFNN) and seasonal autoregressive integrated moving average, (SARIMA) were developed using monthly historical data from 2010 to 2017 and compared against observed data for 2018. The mean absolute error (MAE), root mean square error (RMSE), and paired sample t-test were used as performance measures. Calculated performance measures for FFNN were MAE (94.0), RMSE (137.19), and the test statistic value p=0.493(>0.05) whilst corresponding values for SARIMA were 105.71, 125.28, and p=0.005(<0.05), respectively. Findings of this study suggest that the FFNN model is inclined to value estimation whilst the SARIMA model is directional with a linear pattern over time. Based on the performance measures, the parsimonious FFNN model was selected to predict short-term annual ambulance demand. Demand forecasts with FFNN for 2019 reflected the expected general trends in Bulawayo. The forecasts indicate high demand during the months of January, March, September, and December. Key ambulance logistic activities such as vehicle servicing, replenishment of essential equipment and drugs, staff training, leave days scheduling, and mock drills need to be planned for April, June, and July when low demand is anticipated. This deliberate planning strategy would avoid a dire situation whereby ambulances are available but without adequate staff, essential drugs, and equipment to respond to public emergency calls.

2011 ◽  
Vol 6 (1) ◽  
pp. 55-58 ◽  
Author(s):  
C. Gallego ◽  
A. Costa ◽  
A. Cuerva

Abstract. Ramp events are large rapid variations within wind power time series. Ramp forecasting can benefit from specific strategies so as to particularly take into account these shifts in the wind power output dynamic. In the short-term context (characterized by prediction horizons from minutes to a few days), a Regime-Switching (RS) model based on Artificial Neural Nets (ANN) is proposed. The objective is to identify three regimes in the wind power time series: Ramp-up, Ramp-down and No-ramp regime. An on-line regime assessment methodology is also proposed, based on a local gradient criterion. The RS-ANN model is compared to a single-ANN model (without regime discrimination), concluding that the regime-switching strategy leads to significant improvements for one-hour ahead forecasts, mainly due to the improvements obtained during ramp-up events. Including other explanatory variables (NWP outputs, local measurements) during the regime assessment could eventually improve forecasts for further horizons.


2014 ◽  
Vol 22 (3) ◽  
pp. 576-585 ◽  
Author(s):  
Hossein Tabari ◽  
P. Hosseinzadeh Talaee ◽  
Patrick Willems

Author(s):  
Anna Bakurova ◽  
Olesia Yuskiv ◽  
Dima Shyrokorad ◽  
Anton Riabenko ◽  
Elina Tereschenko

The subject of the research is the methods of constructing and training neural networks as a nonlinear modeling apparatus for solving the problem of predicting the energy consumption of metallurgical enterprises. The purpose of this work is to develop a model for forecasting the consumption of the power system of a metallurgical enterprise and its experimental testing on the data available for research of PJSC "Dneprospetsstal". The following tasks have been solved: analysis of the time series of power consumption; building a model with the help of which data on electricity consumption for a historical period is processed; building the most accurate forecast of the actual amount of electricity for the day ahead; assessment of the forecast quality. Methods used: time series analysis, neural network modeling, short-term forecasting of energy consumption in the metallurgical industry. The results obtained: to develop a model for predicting the energy consumption of a metallurgical enterprise based on artificial neural networks, the MATLAB complex with the Neural Network Toolbox was chosen. When conducting experiments, based on the available statistical data of a metallurgical enterprise, a selection of architectures and algorithms for learning neural networks was carried out. The best results were shown by the feedforward and backpropagation network, architecture with nonlinear autoregressive and learning algorithms: Levenberg-Marquard nonlinear optimization, Bayesian Regularization method and conjugate gradient method. Another approach, deep learning, is also considered, namely the neural network with long short-term memory LSTM and the adam learning algorithm. Such a deep neural network allows you to process large amounts of input information in a short time and build dependencies with uninformative input information. The LSTM network turned out to be the most effective among the considered neural networks, for which the indicator of the maximum prediction error had the minimum value. Conclusions: analysis of forecasting results using the developed models showed that the chosen approach with experimentally selected architectures and learning algorithms meets the necessary requirements for forecast accuracy when developing a forecasting model based on artificial neural networks. The use of models will allow automating high-precision operational hourly forecasting of energy consumption in market conditions. Keywords: energy consumption; forecasting; artificial neural network; time series.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sujan Ghimire ◽  
Zaher Mundher Yaseen ◽  
Aitazaz A. Farooque ◽  
Ravinesh C. Deo ◽  
Ji Zhang ◽  
...  

AbstractStreamflow (Qflow) prediction is one of the essential steps for the reliable and robust water resources planning and management. It is highly vital for hydropower operation, agricultural planning, and flood control. In this study, the convolution neural network (CNN) and Long-Short-term Memory network (LSTM) are combined to make a new integrated model called CNN-LSTM to predict the hourly Qflow (short-term) at Brisbane River and Teewah Creek, Australia. The CNN layers were used to extract the features of Qflow time-series, while the LSTM networks use these features from CNN for Qflow time series prediction. The proposed CNN-LSTM model is benchmarked against the standalone model CNN, LSTM, and Deep Neural Network models and several conventional artificial intelligence (AI) models. Qflow prediction is conducted for different time intervals with the length of 1-Week, 2-Weeks, 4-Weeks, and 9-Months, respectively. With the help of different performance metrics and graphical analysis visualization, the experimental results reveal that with small residual error between the actual and predicted Qflow, the CNN-LSTM model outperforms all the benchmarked conventional AI models as well as ensemble models for all the time intervals. With 84% of Qflow prediction error below the range of 0.05 m3 s−1, CNN-LSTM demonstrates a better performance compared to 80% and 66% for LSTM and DNN, respectively. In summary, the results reveal that the proposed CNN-LSTM model based on the novel framework yields more accurate predictions. Thus, CNN-LSTM has significant practical value in Qflow prediction.


2005 ◽  
Vol 11 (3) ◽  
pp. 301-328 ◽  
Author(s):  
Sen Cheong Kon ◽  
Lindsay W. Turner

In times of tourism uncertainty, practitioners need short-term forecasting methods. This study compares the forecasting accuracy of the basic structural method (BSM) and the neural network method to find the best structure for neural network models. Data for arrivals to Singapore are used to test the analysis while the naïve and Holt-Winters methods are used for base comparison of simpler models. The results confirm that the BSM remains a highly accurate method and that correctly structured neural models can outperform BSM and the simpler methods in the short term, and can also use short data series. These findings make neural methods significant candidates for future research.


Sign in / Sign up

Export Citation Format

Share Document