scholarly journals Novel Ensemble Neural Network Models for better Prediction using Variable Input Approach

2012 ◽  
Vol 39 (18) ◽  
pp. 37-45 ◽  
Author(s):  
Basawaraj Gadgay ◽  
Subhash Kulkarni ◽  
Chandrasekhar B
Healthcare ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 181 ◽  
Author(s):  
Patricia Melin ◽  
Julio Cesar Monica ◽  
Daniela Sanchez ◽  
Oscar Castillo

In this paper, a multiple ensemble neural network model with fuzzy response aggregation for the COVID-19 time series is presented. Ensemble neural networks are composed of a set of modules, which are used to produce several predictions under different conditions. The modules are simple neural networks. Fuzzy logic is then used to aggregate the responses of several predictor modules, in this way, improving the final prediction by combining the outputs of the modules in an intelligent way. Fuzzy logic handles the uncertainty in the process of making a final decision about the prediction. The complete model was tested for the case of predicting the COVID-19 time series in Mexico, at the level of the states and the whole country. The simulation results of the multiple ensemble neural network models with fuzzy response integration show very good predicted values in the validation data set. In fact, the prediction errors of the multiple ensemble neural networks are significantly lower than using traditional monolithic neural networks, in this way showing the advantages of the proposed approach.


2021 ◽  
Author(s):  
Fulai Liu ◽  
Jialiang Xu ◽  
Lijie Zhang ◽  
Ruiyan Du ◽  
Zhibo Su ◽  
...  

Abstract Intrusion detection is a crucial technology in the communication network security field. In this paper, a dynamic evolutionary sparse neural network (DESNN) is proposed for intrusion detection, named as DESNN algorithm. Firstly, an ensemble neural network model is constructed, which is processed by a dynamic pruning rule and further divided into advantage subnetworks and disadvantage subnetworks. The dynamic pruning rule can effectively reduce the subnetworks weight parameters, thereby increasing the speed of the subnetworks intrusion detection. Then considering the subnetworks performance loss caused by the dynamic pruning rule, a novel evolutionary mechanism is proposed to optimize the training process of the disadvantage subnetworks. The weight of the disadvantage subnetworks approach the weight of the advantage subnetworks by the evolutionary mechanism, such that the performance of the ensemble neural network can be improved. Finally, an optimal subnetwork is selected from the ensemble neural network, which is used to detect multiple types of intrusion. Experiments show that the proposed DESNN algorithm improves intrusion detection speed without causing significant performance loss compare with other fully-connected neural network models.


2020 ◽  
Vol 5 ◽  
pp. 140-147 ◽  
Author(s):  
T.N. Aleksandrova ◽  
◽  
E.K. Ushakov ◽  
A.V. Orlova ◽  
◽  
...  

The neural network models series used in the development of an aggregated digital twin of equipment as a cyber-physical system are presented. The twins of machining accuracy, chip formation and tool wear are examined in detail. On their basis, systems for stabilization of the chip formation process during cutting and diagnose of the cutting too wear are developed. Keywords cyberphysical system; neural network model of equipment; big data, digital twin of the chip formation; digital twin of the tool wear; digital twin of nanostructured coating choice


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4242
Author(s):  
Fausto Valencia ◽  
Hugo Arcos ◽  
Franklin Quilumba

The purpose of this research is the evaluation of artificial neural network models in the prediction of stresses in a 400 MVA power transformer winding conductor caused by the circulation of fault currents. The models were compared considering the training, validation, and test data errors’ behavior. Different combinations of hyperparameters were analyzed based on the variation of architectures, optimizers, and activation functions. The data for the process was created from finite element simulations performed in the FEMM software. The design of the Artificial Neural Network was performed using the Keras framework. As a result, a model with one hidden layer was the best suited architecture for the problem at hand, with the optimizer Adam and the activation function ReLU. The final Artificial Neural Network model predictions were compared with the Finite Element Method results, showing good agreement but with a much shorter solution time.


Sign in / Sign up

Export Citation Format

Share Document