scholarly journals Rules for integrals over products of distributions from coordinate independence of path integrals

2001 ◽  
Vol 19 (4) ◽  
pp. 743-747 ◽  
Author(s):  
H. Kleinert ◽  
A. Chervyakov
2002 ◽  
Vol 17 (15) ◽  
pp. 2019-2050 ◽  
Author(s):  
H. KLEINERT ◽  
A. CHERVYAKOV

We show that the requirement of coordinate invariance of perturbatively defined quantum-mechanical path integrals in curved space leads to an extension of the theory of distributions by specifying unique rules for integrating products of distributions. The rules are derived by using equations of motion and partial integration, while keeping track of certain minimal features stemming from the unique definition of all singular integrals in 1 - ∊ dimensions. Our rules guarantee complete agreement with much more cumbersome calculations in 1 - ∊ dimensions where the limit ∊ → 0 is taken at the end. In contrast to our previous papers where we solved the same problem for an infinite time interval or zero temperature, we consider here the more involved case of finite-time or temperature amplitudes.


1986 ◽  
Vol 33 (8) ◽  
pp. 2262-2266 ◽  
Author(s):  
J. Barcelos-Neto ◽  
Ashok Das

2014 ◽  
Vol 23 (12) ◽  
pp. 1442009 ◽  
Author(s):  
Mukund Rangamani ◽  
Massimilliano Rota

The black hole final state proposal implements manifest unitarity in the process of black hole formation and evaporation in quantum gravity, by postulating a unique final state boundary condition at the singularity. We argue that this proposal can be embedded in the gauge/gravity context by invoking a path integral formalism inspired by the Schwinger–Keldysh like thermo-field double construction in the dual field theory. This allows us to realize the gravitational quantum channels for information retrieval to specific deformations of the field theory path integrals and opens up new connections between geometry and information theory.


Sign in / Sign up

Export Citation Format

Share Document