Slope stability analysis by strength reduction method based on average residual displacement increment criterion

Author(s):  
Weijian Sun ◽  
Guoxin Wang ◽  
Leilei Zhang
2013 ◽  
Vol 368-370 ◽  
pp. 1774-1780
Author(s):  
Shi Yan ◽  
Hai Tao Du ◽  
Qi Le Yu ◽  
Han Yan

This paper focuses on stability analysis of an artificial rock mass slope by a nonlinear finite element method (FEM). For a long time, rock slope stability problem is always an important research issue in the field of geotechnical engineering, which is related to human life and property safety as well as engineering security and efficiency. Therefore, the stability analysis and evaluation on rock slope is of great significance. The static and dynamic stability analysis on the artificial rock mass slope of WuAn power plant in China is carried on respectively in this paper by using the strength reduction method and FLAC3D software. In this analysis, static and dynamic instability criterions are enumerated, and the static and dynamic safety factors are calculated with the developed criterions of the displacement mutation, respectively. The analysis results show that the artificial rock mass slope is basically stable. It indicates that analyzing slope stability with strength reduction method is feasible.


2012 ◽  
Vol 424-425 ◽  
pp. 1187-1190
Author(s):  
Yue Zhai ◽  
Kun Long Yin

With the anti-shear parameters reduction, the nonlinear strength reduction FEM model of slope turns to unstable status and the numerical non-convergence occurs simultaneously. Hence, the safety stability factor obtained based on c-φ reduction algorithm can be regarded as equal to stability factor obtained using limit equilibrium method. In this paper, stability analysis of one reservoir slope is made and the calculation results show that the strength reduction method matches the traditional grid limit equilibrium method well, yet with much more available information. Efficient and accurate, the strength reduction FEM is feasible to examine slope stability and analyze slope movement patterns.


Sign in / Sign up

Export Citation Format

Share Document