Three-dimensional nonlinear flow numerical simulation considering the distribution of interlayer shear weakness zones: a case study in Baihetan hydropower project, China

Author(s):  
Qi Shen ◽  
Zhifang Zhou ◽  
Yabing Li
2022 ◽  
Author(s):  
Christoph Fischer ◽  
Andreas H. Fink ◽  
Elmar Schömer ◽  
Roderick van der Linden ◽  
Michael Maier-Gerber ◽  
...  

Abstract. Potential vorticity (PV) analysis plays a central role in studying atmospheric dynamics and in particular in studying the life cycle of weather systems. The three-dimensional (3-D) structure and temporal evolution of the associated PV anomalies, however, are not yet fully understood. An automated technique to objectively identify 3-D PV anomalies can help to shed light on 3-D atmospheric dynamics in specific case studies, as well as facilitate statistical evaluations within climatological studies. Such a technique to identify PV anomalies fully in 3-D, however, does not yet exist. This study presents a novel algorithm for the objective identification of PV anomalies in gridded data, as commonly output by numerical simulation models. The algorithm is inspired by morphological image processing techniques and can be applied to both two-dimensional (2-D) and 3-D fields on vertically isentropic levels. The method maps input data to a horizontally stereographic projection and relies on an efficient computation of horizontal distances within the projected field. Candidates for PV anomaly features are filtered according to heuristic criteria, and feature description vectors are obtained for further analysis. The generated feature descriptions are well suited for subsequent case studies of 3-D atmospheric dynamics as represented by the underlying numerical simulation, or for generation of climatologies of feature characteristics. We evaluate our approach by comparison with an existing 2-D technique, and demonstrate the full 3-D perspective by means of a case study of an extreme precipitation event that was dynamically linked to a prominent subtropical PV anomaly. The case study demonstrates variations in the 3-D structure of the detected PV anomalies that would not have been captured by a 2-D method. We discuss further advantages of using a 3-D approach, including elimination of temporal inconsistencies in the detected features due to 3-D structural variation, and elimination of the need to manually select a specific isentropic level on which the anomalies are assumed to be best captured. The method is made available as open-source for straightforward use by the atmospheric community.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


Sign in / Sign up

Export Citation Format

Share Document