scholarly journals Progress in the R ecosystem for representing and handling spatial data

Author(s):  
Roger S. Bivand

Abstract Twenty years have passed since Bivand and Gebhardt (J Geogr Syst 2(3):307–317, 2000. 10.1007/PL00011460) indicated that there was a good match between the then nascent open-source R programming language and environment and the needs of researchers analysing spatial data. Recalling the development of classes for spatial data presented in book form in Bivand et al. (Applied spatial data analysis with R. Springer, New York, 2008, Applied spatial data analysis with R, 2nd edn. Springer, New York, 2013), it is important to present the progress now occurring in representation of spatial data, and possible consequences for spatial data handling and the statistical analysis of spatial data. Beyond this, it is imperative to discuss the relationships between R-spatial software and the larger open-source geospatial software community on whose work R packages crucially depend.

2020 ◽  
Author(s):  
Martin Wegmann ◽  
Jakob Schwalb-Willmann ◽  
Stefan Dech

This is a book about how ecologists can integrate remote sensing and GIS in their research. It will allow readers to get started with the application of remote sensing and to understand its potential and limitations. Using practical examples, the book covers all necessary steps from planning field campaigns to deriving ecologically relevant information through remote sensing and modelling of species distributions. An Introduction to Spatial Data Analysis introduces spatial data handling using the open source software Quantum GIS (QGIS). In addition, readers will be guided through their first steps in the R programming language. The authors explain the fundamentals of spatial data handling and analysis, empowering the reader to turn data acquired in the field into actual spatial data. Readers will learn to process and analyse spatial data of different types and interpret the data and results. After finishing this book, readers will be able to address questions such as “What is the distance to the border of the protected area?”, “Which points are located close to a road?”, “Which fraction of land cover types exist in my study area?” using different software and techniques. This book is for novice spatial data users and does not assume any prior knowledge of spatial data itself or practical experience working with such data sets. Readers will likely include student and professional ecologists, geographers and any environmental scientists or practitioners who need to collect, visualize and analyse spatial data. The software used is the widely applied open source scientific programs QGIS and R. All scripts and data sets used in the book will be provided online at book.ecosens.org. This book covers specific methods including: what to consider before collecting in situ data how to work with spatial data collected in situ the difference between raster and vector data how to acquire further vector and raster data how to create relevant environmental information how to combine and analyse in situ and remote sensing data how to create useful maps for field work and presentations how to use QGIS and R for spatial analysis how to develop analysis scripts


Author(s):  
Polina Lemenkova

The main purpose of this article is to present the use of R programming language in cartographic visualization demonstrating using machine learning methods in geographic education. Current trends in education technologies are largely influenced by the possibilities of distance-learning, e-learning and selflearning. In view of this, the main tendencies in modern geographic education include active use of open source GIS and publicly available free geospatial datasets that can be used by students for cartographic exercises, data visualization and mapping, both at intermediate and advanced levels. This paper contributes to the development of these methods and is fully based on the datasets and tools available for every student: the R programming language and the free open source datasets. The case study demonstrated in this paper show the examples of both physical geographic mapping (geomorphology) and socio-economic geography (regional mapping) which can be used in the classes and in self-learning. The objective of this research includes geomorphological modelling of the terrain relief in Italy and regional mapping. The data include dem SRTM90 and datasets on regional borders of Italy embedded in R packages 'maps' and 'mapdata'. Modelling references to the characteristics of slope, aspect, hillshade and elevation, their visualization using R packages: 'raster' and 'tmap'. Regional mapping of Italy was made using main package 'ggmap' with the 'ggplot2' as a wrapper. The results present five thematic maps (slope, aspect, hillshade, elevation and regions of Italy) created in R language. Traditionally used in statistical analysis, R is less known as a perfect tool in geographic education. This paper contributes to the development of methods in geographic education by presenting new technologies of the machine learning methods of mapping.


2018 ◽  
Vol 25 (6) ◽  
pp. 1521-1530 ◽  
Author(s):  
Efdal Kaya ◽  
Muge Agca ◽  
Fatih Adiguzel ◽  
Mehmet Cetin

Sign in / Sign up

Export Citation Format

Share Document