scholarly journals Optimal Combination of Linear and Spectral Estimators for Generalized Linear Models

Author(s):  
Marco Mondelli ◽  
Christos Thrampoulidis ◽  
Ramji Venkataramanan

AbstractWe study the problem of recovering an unknown signal $${\varvec{x}}$$ x given measurements obtained from a generalized linear model with a Gaussian sensing matrix. Two popular solutions are based on a linear estimator $$\hat{\varvec{x}}^\mathrm{L}$$ x ^ L and a spectral estimator $$\hat{\varvec{x}}^\mathrm{s}$$ x ^ s . The former is a data-dependent linear combination of the columns of the measurement matrix, and its analysis is quite simple. The latter is the principal eigenvector of a data-dependent matrix, and a recent line of work has studied its performance. In this paper, we show how to optimally combine $$\hat{\varvec{x}}^\mathrm{L}$$ x ^ L and $$\hat{\varvec{x}}^\mathrm{s}$$ x ^ s . At the heart of our analysis is the exact characterization of the empirical joint distribution of $$({\varvec{x}}, \hat{\varvec{x}}^\mathrm{L}, \hat{\varvec{x}}^\mathrm{s})$$ ( x , x ^ L , x ^ s ) in the high-dimensional limit. This allows us to compute the Bayes-optimal combination of $$\hat{\varvec{x}}^\mathrm{L}$$ x ^ L and $$\hat{\varvec{x}}^\mathrm{s}$$ x ^ s , given the limiting distribution of the signal $${\varvec{x}}$$ x . When the distribution of the signal is Gaussian, then the Bayes-optimal combination has the form $$\theta \hat{\varvec{x}}^\mathrm{L}+\hat{\varvec{x}}^\mathrm{s}$$ θ x ^ L + x ^ s and we derive the optimal combination coefficient. In order to establish the limiting distribution of $$({\varvec{x}}, \hat{\varvec{x}}^\mathrm{L}, \hat{\varvec{x}}^\mathrm{s})$$ ( x , x ^ L , x ^ s ) , we design and analyze an approximate message passing algorithm whose iterates give $$\hat{\varvec{x}}^\mathrm{L}$$ x ^ L and approach $$\hat{\varvec{x}}^\mathrm{s}$$ x ^ s . Numerical simulations demonstrate the improvement of the proposed combination with respect to the two methods considered separately.

2021 ◽  
Vol 2021 (12) ◽  
pp. 124004
Author(s):  
Parthe Pandit ◽  
Mojtaba Sahraee-Ardakan ◽  
Sundeep Rangan ◽  
Philip Schniter ◽  
Alyson K Fletcher

Abstract We consider the problem of estimating the input and hidden variables of a stochastic multi-layer neural network (NN) from an observation of the output. The hidden variables in each layer are represented as matrices with statistical interactions along both rows as well as columns. This problem applies to matrix imputation, signal recovery via deep generative prior models, multi-task and mixed regression, and learning certain classes of two-layer NNs. We extend a recently-developed algorithm—multi-layer vector approximate message passing, for this matrix-valued inference problem. It is shown that the performance of the proposed multi-layer matrix vector approximate message passing algorithm can be exactly predicted in a certain random large-system limit, where the dimensions N × d of the unknown quantities grow as N → ∞ with d fixed. In the two-layer neural-network learning problem, this scaling corresponds to the case where the number of input features as well as training samples grow to infinity but the number of hidden nodes stays fixed. The analysis enables a precise prediction of the parameter and test error of the learning.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Yunjian Zhang ◽  
Zhenmiao Deng ◽  
Jianghong Shi ◽  
Linmei Ye ◽  
Maozhong Fu ◽  
...  

A novel method for solving Doppler ambiguous problem based on compressed sensing (CS) theory is proposed in this paper. A pulse train with the random and sparse transmitting time is transmitted. The received signals after matched filtering can be viewed as randomly sparse sampling from the traditional fixed-pulse repetition frequency (PRF) echo signals. The whole target echo could be reconstructed via CS recovery algorithms. Through refining the sensing matrix, which is equivalent to increase the sampling frequency of target characteristic, the Doppler unambiguous range is enlarged. In particular, Complex Approximate Message Passing (CAMP) algorithm is developed to estimate the unambiguity Doppler frequency. Cramer-Rao lower bound expressions are derived for the frequency. Numerical simulations validate the effectiveness of the proposed method. Finally, compared with traditional methods, the proposed method only requires transmitting a few sparse probing pulses to achieve a larger Doppler frequency unambiguous range and can also reduce the consumption of the radar time resources.


Author(s):  
W. Ben Abdallah ◽  
R. Abdelfattah

The goal of this paper is to estimate a denoised phase image from the observed noisy SAR interferogram. We proposed a linear model to obtain a sparse representation of the interferomteric phase image. The main idea is based on the smoothness property of the phases inside interferometric fringes which leads to get a sparse image when applying the gradient operator twice, along <i>x</i> or <i>y</i> direction, on the interferogram. The new sparse representation of the interferometric phase image allows to transform the denoising problem to an optimization one. So the estimated interferogram is achieved using the approximate message passing algorithm. The proposed approach is validated on different cases of simulated and real interferograms.


Sign in / Sign up

Export Citation Format

Share Document