Local tissue heterogeneity may modulate neuronal responses via altered axon strain fields: insights about innervated joint capsules from a computational model

Author(s):  
Jill M. Middendorf ◽  
Meagan E. Ita ◽  
Beth A. Winkelstein ◽  
Victor H. Barocas
eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Arthur-Ervin Avramiea ◽  
Richard Hardstone ◽  
Jan-Matthis Lueckmann ◽  
Jan Bím ◽  
Huibert D Mansvelder ◽  
...  

Understanding why identical stimuli give differing neuronal responses and percepts is a central challenge in research on attention and consciousness. Ongoing oscillations reflect functional states that bias processing of incoming signals through amplitude and phase. It is not known, however, whether the effect of phase or amplitude on stimulus processing depends on the long-term global dynamics of the networks generating the oscillations. Here, we show, using a computational model, that the ability of networks to regulate stimulus response based on pre-stimulus activity requires near-critical dynamics—a dynamical state that emerges from networks with balanced excitation and inhibition, and that is characterized by scale-free fluctuations. We also find that networks exhibiting critical oscillations produce differing responses to the largest range of stimulus intensities. Thus, the brain may bring its dynamics close to the critical state whenever such network versatility is required.


Author(s):  
R. J. Horylev ◽  
L. E. Murr

Smith has shown by dark-field electron microscopy of extracted ThO2 particles from TD-nickel (2% ThO2) that they possess single crystal characteristics. It is generally assumed that these particle dispersions are incoherent. However, some diffraction effects associated with the particle images appeared to be similar to coherency strain fields. The present work will demonstrate conclusively that ThO2 dispersed particles in TD-nickel (2% ThO2) and TD-NiCr (2% ThO2, 20% Cr, Ni) are single crystals. Moreover, the diffraction contrast effects are extinction fringes. That is, these effects arise because of the particle orientation with respect to the electron beam and the extinction conditions for various operating reflections The particles are in fact incoherent.


Author(s):  
M. Kelly ◽  
D.M. Bird

It is well known that strain fields can have a strong influence on the details of HREM images. This, for example, can cause problems in the analysis of edge-on interfaces between lattice mismatched materials. An interesting alternative to conventional HREM imaging has recently been advanced by Pennycook and co-workers where the intensity variation in the annular dark field (ADF) detector is monitored as a STEM probe is scanned across the specimen. It is believed that the observed atomic-resolution contrast is correlated with the intensity of the STEM probe at the atomic sites and the way in which this varies as the probe moves from cell to cell. As well as providing a directly interpretable high-resolution image, there are reasons for believing that ADF-STEM images may be less suseptible to strain than conventional HREM. This is because HREM images arise from the interference of several diffracted beams, each of which is governed by all the excited Bloch waves in the crystal.


Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


Author(s):  
Paul Van Den Broek ◽  
Yuhtsuen Tzeng ◽  
Sandy Virtue ◽  
Tracy Linderholm ◽  
Michael E. Young

1992 ◽  
Author(s):  
William A. Johnston ◽  
Kevin J. Hawley ◽  
James M. Farnham
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document