Bacillus subtilis strain L1 promotes nitrate reductase activity in Arabidopsis and elicits enhanced growth performance in Arabidopsis, lettuce, and wheat

2020 ◽  
Vol 133 (2) ◽  
pp. 231-244 ◽  
Author(s):  
Seokjin Lee ◽  
Cao Sơn Trịnh ◽  
Won Je Lee ◽  
Chan Young Jeong ◽  
Hai An Truong ◽  
...  
2007 ◽  
Vol 37 (4) ◽  
pp. 533-541 ◽  
Author(s):  
Denize Caranhas de Sousa Barreto ◽  
José Francisco de Carvalho Gonçalves ◽  
Ulysses Moreira dos Santos Júnior ◽  
Andreia Varmes Fernandes ◽  
Adriana Bariani ◽  
...  

The rosewood (Aniba rosaeodora Ducke) is a native tree species of Amazon rainforest growing naturally in acidic forest soils with reduced redox potential. However, this species can also been found growing in forest gaps containing oxide soils. Variations in the forms of mineral nitrogen (NO3- or NH4+) may be predicted in these different edaphic conditions. Considering that possibility, an experiment was carried out to analyze the effects of different NO3-:NH4+ ratios on the growth performance, mineral composition, chloroplastid pigment contents, photochemical efficiency photosystem II (PSII), and nitrate redutase activity (RN, E.C.1.6.6.1) on A. rosaeodora seedlings. Nine-month-old seedlings were grown in pots with a washed sand capacity of 7.5 kg and submitted to different NO3-:NH4+ ratios (T1 = 0:100%, T2 = 25:75%, T3 = 50:50%, T4 = 75:25%, and T5 = 100:0%). The lowest relative growth rate was observed when the NO3-:NH4+ ratio was equal to 0:100%. In general, high concentrations of NO3- rather than NH4+ favored a greater nutrient accumulation in different parts of the plant. For the chloroplastid pigment, the highest Chl a, Chl b, Chl tot, Chl a/b and Chl tot/Cx+c contents were found in the treatment with 75:25% of NO3-:NH4+, and for Chl b and Cx+c it was observed no difference. In addition, there was a higher photochemical efficiency of PSII (Fv/Fm) when high NO3- concentrations were used. A linear and positive response for the nitrate reductase activity was recorded when the nitrate content increased on the culture substrate. Our results suggest that A. rosaeodora seedlings have a better growth performance when the NO3- concentrations in the culture substrate were higher than the NH4+ concentrations.


Crop Science ◽  
1966 ◽  
Vol 6 (2) ◽  
pp. 169-173 ◽  
Author(s):  
L. E. Schrader ◽  
D. M. Peterson ◽  
E. R. Leng ◽  
R. H. Hageman

Crop Science ◽  
1982 ◽  
Vol 22 (1) ◽  
pp. 85-88 ◽  
Author(s):  
E. L. Deckard ◽  
N. D. Williams ◽  
J. J. Hammond ◽  
L. R. Joppa

Author(s):  
Xudong Zhang ◽  
Bastian L. Franzisky ◽  
Lars Eigner ◽  
Christoph‐Martin Geilfus ◽  
Christian Zörb

AbstractChloride (Cl−) is required for photosynthesis and regulates osmotic balance. However, excess Cl− application negatively interacts with nitrate ($${\mathrm{NO}}_{3}^{-}$$ NO 3 - ) uptake, although its effect on $${\mathrm{NO}}_{3}^{-}$$ NO 3 - metabolism remains unclear. The aim was to test whether Cl− stress disturbs nitrate reductase activity (NRA). A maize variety (Zea mays L. cv. LG 30215) was hydroponically cultured in a greenhouse under the following conditions: control (2 mM CaCl2), moderate Cl− (10 mM CaCl2), high Cl− (60 mM CaCl2). To substantiate the effect of Cl− stress further, an osmotic stress with lower intensity was induced by 60 g polyethylene glycol (PEG) 6000 L−1 + 2 mM CaCl2), which was 57% of the osmotic pressure being produced by 60 mM CaCl2. Results show that high Cl− and PEG-induced osmotic stress significantly reduced shoot biomass, stomatal conductance and transpiration rate, but NRA was only decreased by high Cl− stress. The interference of NRA in chloride-stressed maize is supposed to be primarily caused by the antagonistic uptake of Cl− and $${\mathrm{NO}}_{3}^{-}$$ NO 3 - .


Sign in / Sign up

Export Citation Format

Share Document