DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN 2 of Arabidopsis thaliana is a negative regulator of local and systemic acquired resistance

2020 ◽  
Vol 133 (3) ◽  
pp. 409-417
Author(s):  
Shweta Roy ◽  
Shobhita Saxena ◽  
Aviroop Sinha ◽  
Ashis Kumar Nandi
Cell ◽  
1999 ◽  
Vol 98 (3) ◽  
pp. 329-339 ◽  
Author(s):  
Xin Li ◽  
Yuelin Zhang ◽  
Joseph D Clarke ◽  
Yan Li ◽  
Xinnian Dong

Genetics ◽  
2004 ◽  
Vol 168 (4) ◽  
pp. 2197-2206 ◽  
Author(s):  
Andrew J. Heidel ◽  
Joseph D. Clarke ◽  
Janis Antonovics ◽  
Xinnian Dong

2020 ◽  
Vol 71 (16) ◽  
pp. 4903-4913 ◽  
Author(s):  
Zulkarnain Chowdhury ◽  
Devasantosh Mohanty ◽  
Mrunmay K Giri ◽  
Barney J Venables ◽  
Ratnesh Chaturvedi ◽  
...  

Abstract Abietane diterpenoids are tricyclic diterpenes whose biological functions in angiosperms are largely unknown. Here, we show that dehydroabietinal (DA) fosters transition from the vegetative phase to reproductive development in Arabidopsis thaliana by promoting flowering time. DA’s promotion of flowering time was mediated through up-regulation of the autonomous pathway genes FLOWERING LOCUS D (FLD), RELATIVE OF EARLY FLOWERING 6 (REF6), and FVE, which repress expression of FLOWERING LOCUS C (FLC), a negative regulator of the key floral integrator FLOWERING LOCUS T (FT). Our results further indicate that FLD, REF6, and FVE are also required for systemic acquired resistance (SAR), an inducible defense mechanism that is also activated by DA. However, unlike flowering time, FT was not required for DA-induced SAR. Conversely, salicylic acid, which is essential for the manifestation of SAR, was not required for the DA-promoted flowering time. Thus, although the autonomous pathway genes FLD, REF6, and FVE are involved in SAR and flowering time, these biological processes are not interdependent. We suggest that SAR and flowering time signaling pathways bifurcate at a step downstream of FLD, REF6, and FVE, with an FLC-dependent arm controlling flowering time, and an FLC-independent pathway controlling SAR.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yezhang Ding ◽  
Matthew R. Dommel ◽  
Chenggang Wang ◽  
Qi Li ◽  
Qi Zhao ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jamshaid Hussain ◽  
Jian Chen ◽  
Vittoria Locato ◽  
Wilma Sabetta ◽  
Smrutisanjita Behera ◽  
...  

Abstract The infection of Arabidopsis thaliana plants with avirulent pathogens causes the accumulation of cGMP with a biphasic profile downstream of nitric oxide signalling. However, plant enzymes that modulate cGMP levels have yet to be identified, so we generated transgenic A. thaliana plants expressing the rat soluble guanylate cyclase (GC) to increase genetically the level of cGMP and to study the function of cGMP in plant defence responses. Once confirmed that cGMP levels were higher in the GC transgenic lines than in wild-type controls, the GC transgenic plants were then challenged with bacterial pathogens and their defence responses were characterized. Although local resistance was similar in the GC transgenic and wild-type lines, differences in the redox state suggested potential cross-talk between cGMP and the glutathione redox system. Furthermore, large-scale transcriptomic and proteomic analysis highlighted the significant modulation of both gene expression and protein abundance at the infection site, inhibiting the establishment of systemic acquired resistance. Our data indicate that cGMP plays a key role in local responses controlling the induction of systemic acquired resistance in plants challenged with avirulent pathogens.


Sign in / Sign up

Export Citation Format

Share Document