scholarly journals GLONASS FDMA data for RTK positioning: a five-system analysis

GPS Solutions ◽  
2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Andreas Brack ◽  
Benjamin Männel ◽  
Harald Schuh

Abstract The use of the GLONASS legacy signals for real-time kinematic positioning is considered. Due to the FDMA multiplexing scheme, the conventional CDMA observation model has to be modified to restore the integer estimability of the ambiguities. This modification has a strong impact on positioning capabilities. In particular, the ambiguity resolution performance of this model is clearly weaker than for CDMA systems, so that fast and reliable full ambiguity resolution is usually not feasible for standalone GLONASS, and adding GLONASS data in a multi-GNSS approach can reduce the ambiguity resolution performance of the combined model. Partial ambiguity resolution was demonstrated to be a suitable tool to overcome this weakness (Teunissen in GPS Solut 23(4):100, 2019). We provide an exhaustive formal analysis of the positioning precision and ambiguity resolution capabilities for short, medium, and long baselines in a multi-GNSS environment with GPS, Galileo, BeiDou, QZSS, and GLONASS. Simulations are used to show that with a difference test-based partial ambiguity resolution method, adding GLONASS data improves the positioning performance in all considered cases. Real data from different baselines are used to verify these findings. When using all five available systems, instantaneous centimeter-level positioning is possible on an 88.5 km baseline with the ionosphere weighted model, and on average, only 3.27 epochs are required for a long baseline with the ionosphere float model, thereby enabling near instantaneous solutions.

2014 ◽  
Vol 67 (3) ◽  
pp. 385-401 ◽  
Author(s):  
Dennis Odijk ◽  
Balwinder S. Arora ◽  
Peter J.G. Teunissen

This contribution covers precise (cm-level) relative Global Navigation Satellite System (GNSS) positioning for which the baseline length can reach up to a few hundred km. Carrier-phase ambiguity resolution is required to obtain this high positioning accuracy within manageable observation time spans. However, for such long baselines, the differential ionospheric delays hamper fast ambiguity resolution as based on current dual-frequency Global Positioning System (GPS). It is expected that the modernization of GPS towards a triple-frequency system, as well as the development of Galileo towards a full constellation will be beneficial in speeding up long-baseline ambiguity resolution. In this article we will predict ambiguity resolution success rates for GPS+Galileo for a 250 km baseline based on the ambiguity variance matrix, where the Galileo constellation is simulated by means of Yuma almanac data. From our studies it can be concluded that ambiguity resolution will likely become faster (less than ten minutes) in the case of GPS+Galileo when based on triple-frequency data of both systems, however much shorter times to fix the ambiguities (one-two minutes) can be expected when only a subset of ambiguities is fixed instead of the complete vector (partial ambiguity resolution).


2021 ◽  
Vol 13 (15) ◽  
pp. 2904
Author(s):  
Juan Manuel Castro-Arvizu ◽  
Daniel Medina ◽  
Ralf Ziebold ◽  
Jordi Vilà-Valls ◽  
Eric Chaumette ◽  
...  

The use of carrier phase data is the main driver for high-precision Global Navigation Satellite Systems (GNSS) positioning solutions, such as Real-Time Kinematic (RTK). However, carrier phase observations are ambiguous by an unknown number of cycles, and their use in RTK relies on the process of mapping real-valued ambiguities to integer ones, so-called Integer Ambiguity Resolution (IAR). The main goal of IAR is to enhance the position solution by virtue of its correlation with the estimated integer ambiguities. With the deployment of new GNSS constellations and frequencies, a large number of observations is available. While this is generally positive, positioning in medium and long baselines is challenging due to the atmospheric residuals. In this context, the process of solving the complete set of ambiguities, so-called Full Ambiguity Resolution (FAR), is limiting and may lead to a decreased availability of precise positioning. Alternatively, Partial Ambiguity Resolution (PAR) relaxes the condition of estimating the complete vector of ambiguities and, instead, finds a subset of them to maximize the availability. This article reviews the state-of-the-art PAR schemes, addresses the analytical performance of a PAR estimator following a generalization of the Cramér–Rao Bound (CRB) for the RTK problem, and introduces Precision-Driven PAR (PD-PAR). The latter constitutes a new PAR scheme which employs the formal precision of the (potentially fixed) positioning solution as selection criteria for the subset of ambiguities to fix. Numerical simulations are used to showcase the performance of conventional FAR and FAR approaches, and the proposed PD-PAR against the generalized CRB associated with PAR problems. Real-data experimental analysis for a medium baseline complements the synthetic scenario. The results demonstrate that (i) the generalization for the RTK CRB constitutes a valid lower bound to assess the asymptotic behavior of PAR estimators, and (ii) the proposed PD-PAR technique outperforms existing FAR and PAR solutions as a non-recursive estimator for medium and long baselines.


2020 ◽  
Author(s):  
Andreas Brack

Global navigation satellite systems provide ranging based positioning and timing services. The use of the periodic carrier-phase signals is the key to fast and accurate solutions, given that the inherent ambiguities of the carrier-phase measurements are correctly resolved. The idea of partial ambiguity resolution is to resolve a subset of all ambiguities, which enables faster solutions but does not fully exploit the high precision of the carrier-phase measurements. Theory, methods, and algorithms for partial ambiguity resolution are discussed and analyzed with simulated and real data.


Science ◽  
2013 ◽  
Vol 341 (6150) ◽  
pp. 1082-1085 ◽  
Author(s):  
Raffaella Morganti ◽  
Judit Fogasy ◽  
Zsolt Paragi ◽  
Tom Oosterloo ◽  
Monica Orienti

The energy released by an active galactic nucleus (AGN) has a strong impact on the surrounding interstellar medium (ISM). This feedback is considered to be the regulating factor for the growth of the central massive black hole and for the rate of star formation in a galaxy. We have located, using very-long-baseline interferometry, the fast outflow of neutral hydrogen in the young, restarted radio-loud AGN 4C12.50. The outflow is located 100 parsec from the nucleus where the radio jet interacts with the ISM, as well as around the associated radio lobe. These observations show that the radio plasma drives the outflow and removes gas from the central regions and that jet-driven outflows can play a relevant role in feedback mechanisms.


Sign in / Sign up

Export Citation Format

Share Document