scholarly journals Partial Carrier-Phase Integer Ambiguity Resolution for High Accuracy GNSS Positioning

2020 ◽  
Author(s):  
Andreas Brack

Global navigation satellite systems provide ranging based positioning and timing services. The use of the periodic carrier-phase signals is the key to fast and accurate solutions, given that the inherent ambiguities of the carrier-phase measurements are correctly resolved. The idea of partial ambiguity resolution is to resolve a subset of all ambiguities, which enables faster solutions but does not fully exploit the high precision of the carrier-phase measurements. Theory, methods, and algorithms for partial ambiguity resolution are discussed and analyzed with simulated and real data.

2021 ◽  
Vol 13 (15) ◽  
pp. 2904
Author(s):  
Juan Manuel Castro-Arvizu ◽  
Daniel Medina ◽  
Ralf Ziebold ◽  
Jordi Vilà-Valls ◽  
Eric Chaumette ◽  
...  

The use of carrier phase data is the main driver for high-precision Global Navigation Satellite Systems (GNSS) positioning solutions, such as Real-Time Kinematic (RTK). However, carrier phase observations are ambiguous by an unknown number of cycles, and their use in RTK relies on the process of mapping real-valued ambiguities to integer ones, so-called Integer Ambiguity Resolution (IAR). The main goal of IAR is to enhance the position solution by virtue of its correlation with the estimated integer ambiguities. With the deployment of new GNSS constellations and frequencies, a large number of observations is available. While this is generally positive, positioning in medium and long baselines is challenging due to the atmospheric residuals. In this context, the process of solving the complete set of ambiguities, so-called Full Ambiguity Resolution (FAR), is limiting and may lead to a decreased availability of precise positioning. Alternatively, Partial Ambiguity Resolution (PAR) relaxes the condition of estimating the complete vector of ambiguities and, instead, finds a subset of them to maximize the availability. This article reviews the state-of-the-art PAR schemes, addresses the analytical performance of a PAR estimator following a generalization of the Cramér–Rao Bound (CRB) for the RTK problem, and introduces Precision-Driven PAR (PD-PAR). The latter constitutes a new PAR scheme which employs the formal precision of the (potentially fixed) positioning solution as selection criteria for the subset of ambiguities to fix. Numerical simulations are used to showcase the performance of conventional FAR and FAR approaches, and the proposed PD-PAR against the generalized CRB associated with PAR problems. Real-data experimental analysis for a medium baseline complements the synthetic scenario. The results demonstrate that (i) the generalization for the RTK CRB constitutes a valid lower bound to assess the asymptotic behavior of PAR estimators, and (ii) the proposed PD-PAR technique outperforms existing FAR and PAR solutions as a non-recursive estimator for medium and long baselines.


2012 ◽  
Vol 66 (3) ◽  
pp. 321-333 ◽  
Author(s):  
Tao Li ◽  
Jinling Wang

Integer ambiguity validation is pivotal in precise positioning with Global Navigation Satellite Systems (GNSS). Recent research has shown traditionally used ambiguity validation methods can be classified as members of the Integer Aperture (IA) estimators, and by the virtue of the IA estimation, a user controllable IA fail-rate is preferred. However, an appropriately chosen fail-rate is essential for ambiguity validation. In this paper, the upper bound and the lower bound for the IA fail-rate, which are extremely useful even at the designing stage of a GNSS positioning system, have been analysed, and numerical results imply that a meaningful IA fail-rate should be within this range.


2020 ◽  
Vol 12 (3) ◽  
pp. 493 ◽  
Author(s):  
Ruijie Xi ◽  
Xiaolin Meng ◽  
Weiping Jiang ◽  
Xiangdong An ◽  
Qiyi He ◽  
...  

Site-dependent effects are now the key factors that restrict the high accuracy applications of Global Navigation Satellite System (GNSS) technology, such as deformation monitoring. To reduce the effects of non-line-of-sight (NLOS) signal and multipath, methods and models applied to both of the function model and stochastic model of least-squares (LS) have been proposed. However, the existing methods and models may not be convenient to use and not be appropriate to all GNSS satellites. In this study, the SNR features of GPS and GLONASS are analyzed first, and a refined SNR based stochastic model is proposed, in which the links between carrier phase precision and SNR observation have been reasonably established. Compared with the existing models, the refined model in this paper could be used in real-time and the carrier phase precision could be reasonably shown with the SNR data. More importantly, it is applicable to all GNSS satellite systems. Based on this model, the site observation environment can be assessed in advance to show the obstruction area. With a bridge deformation monitoring platform, the performance of this model was tested in the aspect of integer ambiguity resolution and data processing. The results show that, compared with the existing stochastic models, this model could have the highest integer ambiguity resolution success rate and the lowest noise level in the data processing time series with obvious obstruction beside the site.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3919 ◽  
Author(s):  
Lei Wang ◽  
Ruizhi Chen ◽  
Deren Li ◽  
Guo Zhang ◽  
Xin Shen ◽  
...  

A low Earth orbiter (LEO)-based navigation signal augmentation system is considered as a complementary of current global navigation satellite systems (GNSS), which can accelerate precise positioning convergence, strengthen the signal power, and improve signal quality. Wuhan University is dedicated to LEO-based navigation signal augmentation research and launched one scientific experimental satellite named Luojia-1A. The satellite is capable of broadcasting dual-frequency band ranging signals over China. The initial performance of the Luojia-1A satellite navigation augmentation system is assessed in this study. The ground tests indicate that the phase noise of the oscillator is sufficiently low to support the intended applications. The field ranging tests achieve 2.6 m and 0.013 m ranging precision for the pseudorange and carrier phase measurements, respectively. The in-orbit test shows that the internal precision of the ephemeris is approximate 0.1 m and the clock stability is 3 × 10−10. The pseudorange and carrier phase measurement noise evaluated from the geometry-free combination is about 3.3 m and 1.8 cm. Overall, the Luojia-1A navigation augmentation system is capable of providing useable LEO navigation augmentation signals with the empirical user equivalent ranging error (UERE) no worse than 3.6 m, which can be integrated with existing GNSS to improve the real-time navigation performance.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6731
Author(s):  
Zhenyu Zhang ◽  
Shaoli Kang ◽  
Xiang Zhang

Carrier phase measurement is a ranging technique that uses the receiver to determine the phase difference between the received signal and the transmitted signal. Carrier phase ranging has a high resolution; thus, it is an important research direction for high precision positioning. It is widely used in global navigation satellite systems (GNSS) systems but is not yet commonly used inwireless orthogonal frequency division multiplex (OFDM) systems. Applying carrier phase technology to OFDM systems can significantly improve positioning accuracy. Like GNSS carrier phase positioning, using the OFDM carrier phase for positioning has the following two problems. First, multipath and non-line-of-sight (NLOS) propagation have severe effects on carrier phase measurements. Secondly, ambiguity resolution is also a primary issue in the carrier phase positioning. This paper presents a ranging scheme based on the carrier phase in a multipath environment. Moreover, an algorithm based on the extended Kalman filter (EKF) is developed for fast integer ambiguity resolution and NLOS error mitigation. The simulation results show that the EKF algorithm proposed in this paper solves the integer ambiguity quickly. Further, the high-resolution carrier phase measurements combined with the accurately estimated integer ambiguity lead to less than 30-centimeter positioning error for 90% of the terminals. In conclusion, the presented methods gain excellent performance, even when NLOS error occur.


2021 ◽  
Author(s):  
Estel Cardellach ◽  
Weiqiang Li ◽  
Dallas Masters ◽  
Takayuki Yuasa ◽  
Franck Borde ◽  
...  

<p>Recently, different studies have shown evidence of signals transmitted by the Global Navigation Satellite Systems (GNSS), coherently reflected over some parts of the ocean, and received from cubesats. In particular, strong coherent scattering has been reported in regions with low water surface roughness as those near continental masses and in atolls. Over open ocean, few coherent signals were reported to be found, although the data sets were somewhat limited and certainly not exhaustive. The level of coherence in reflected GNSS signals depends on the roughness of the  surface (i.e. significant wave height and small scale ripples and waves induced by the wind), the viewing geometry (i.e. incidence angle, or equivalently, elevation angle of the GNSS satellite as seen from the point of reflection), propagation effects (namely ionospheric disturbances) and on the frequency (i.e. particular GNSS band, like L1/E1, L2 or L5/E5). These coherent measurements over ocean follow earlier evidence of coherent GNSS reflections over sea ice which date back to 2005, the time of UK-DMC mission. More recently, Sea Ice Thickness (SIT) retrievals have also been carried out with this technique, at an accuracy comparable to that of SMOS.</p><p>All the observations referred so far were done at a single frequency, L1/E1. So, there is an interest to explore the coherence at the other main GNSS bands, i.e. L2 and L5/E5 as well as to the widelane combinations between them (linear combinations of carrier-phase measurements, of longer effective wavelength). Spire Global radio occultation cubesats work at L1 and L2 frequency bands, and therefore provide unique dual-frequency raw data sets of reflected signals over open ocean, sea ice and inland water bodies. With these, it is possible to study the coherence of these targets at each of the bands and at their widelane combination, as well as the performance of altimetric retrievals at grazing angles of observation (very slant geometries, which facilitate coherence properties of the scattering). The dual-frequency observations can correct the ionospheric effects, and their widelane combinations, of longer effective wavelength, might expand the conditions for coherence. The fact that this new approach is fully compatible with small GNSS radio occultation payloads and missions, might represent a low cost source of precise altimetry to complement larger dedicated missions.</p><p>An ESA research study involving Spire Global and IEEC aims at studying this new potential altimetric technique. Raw data acquisitions from limb-looking antennas of Spire’s cubesat constellation were selected to be geographically and time collocated with ESA Sentinel 3A and 3B passes in order to compare the results of coherence and altimetry. For this study, the raw data at two frequencies, acquired at 6.2 Mbps, are shifted to intermediate frequencies and downloaded to the ground without any further processing. In-house software receivers are then applied to generate the reflected echoes or waveforms, and to track the phase of the carrier signals. Precise altimetry (a few cm in 20 ms integration) is then possible from these observables. The results of this activity will be shown, focusing on altimetric retrievals over large lakes.</p>


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5402 ◽  
Author(s):  
Daniel Medina ◽  
Haoqing Li ◽  
Jordi Vilà-Valls ◽  
Pau Closas

Navigation problems are generally solved applying least-squares (LS) adjustments. Techniques based on LS can be shown to perform optimally when the system noise is Gaussian distributed and the parametric model is accurately known. Unfortunately, real world problems usually contain unexpectedly large errors, so-called outliers, that violate the noise model assumption, leading to a spoiled solution estimation. In this work, the framework of robust statistics is explored to provide robust solutions to the global navigation satellite systems (GNSS) single point positioning (SPP) problem. Considering that GNSS observables may be contaminated by erroneous measurements, we survey the most popular approaches for robust regression (M-, S-, and MM-estimators) and how they can be adapted into a general methodology for robust GNSS positioning. We provide both theoretical insights and validation over experimental datasets, which serves in discussing the robust methods in detail.


Sign in / Sign up

Export Citation Format

Share Document